摘要
针对基于特征值的谱感知算法在脉冲噪声的环境下感知性能不佳的问题,分析矩阵全部的特征值,引入矩阵特征值的几何均值,提出了基于分数低阶协方差矩阵的最大特征值与特征值几何均值之差(difference between maximum eigenvalue and geometric mean of eigenvalue,DMGM)的频谱感知算法。选择了Alpha稳定分布噪声模拟脉冲噪声环境,理论分析与仿真实验结果表明,在不增加算法复杂度的前提下,DMGM算法与其他算法相比,更适用于脉冲噪声环境,在低信噪比条件下具有更好的感知性能。
Aiming at the problem that the spectral sensing algorithm based on eigenvalue has poor sensing performance in the environment of impulse noise.All eigenvalues of the matrix are analyzed and the geometric mean of the eigenvalues of the matrix is introduced.A spectrum sensing algorithm based on the difference between maximum eigenvalue and geometric mean of eigenvalue(DMGM)of the fractional low-order covariance matrix is proposed.Alpha stable distribution noise is selected to simulate the impulse noise environment.Theoretical analysis and simulation results show that DMGM has better perceptual performance than other algorithms in low signal to noise ratio environments,and has better perceptual performance under low signal to noise ratio conditions.
作者
陈增茂
汪楷淋
孙志国
孙溶辰
阿尔斯楞
CHEN Zengmao;WANG Kailin;SUN Zhiguo;SUN Rongchen;AER Sileng(School of Information and Communication Engineering,Harbin Engineering University,Harbin 150001,China;Key Laboratory of Advanced Marine Communication and Information Technology,Ministry of Industry and Information Technology,Harbin Engineering University,Harbin 150001,China)
出处
《系统工程与电子技术》
EI
CSCD
北大核心
2023年第9期2949-2955,共7页
Systems Engineering and Electronics
基金
国家自然科学基金(62001139)资助课题。
关键词
频谱感知
ALPHA稳定分布
分数低阶矩
采样协方差
几何均值
spectrum sensing
Alpha stable distributed
fractional low order moments
sampling covariance
geometric mean