期刊文献+

Alpha稳定分布噪声下基于特征值之差频谱感知算法

Eigenvalue difference spectrum sensing algorithm under Alpha stable distributed noise
下载PDF
导出
摘要 针对基于特征值的谱感知算法在脉冲噪声的环境下感知性能不佳的问题,分析矩阵全部的特征值,引入矩阵特征值的几何均值,提出了基于分数低阶协方差矩阵的最大特征值与特征值几何均值之差(difference between maximum eigenvalue and geometric mean of eigenvalue,DMGM)的频谱感知算法。选择了Alpha稳定分布噪声模拟脉冲噪声环境,理论分析与仿真实验结果表明,在不增加算法复杂度的前提下,DMGM算法与其他算法相比,更适用于脉冲噪声环境,在低信噪比条件下具有更好的感知性能。 Aiming at the problem that the spectral sensing algorithm based on eigenvalue has poor sensing performance in the environment of impulse noise.All eigenvalues of the matrix are analyzed and the geometric mean of the eigenvalues of the matrix is introduced.A spectrum sensing algorithm based on the difference between maximum eigenvalue and geometric mean of eigenvalue(DMGM)of the fractional low-order covariance matrix is proposed.Alpha stable distribution noise is selected to simulate the impulse noise environment.Theoretical analysis and simulation results show that DMGM has better perceptual performance than other algorithms in low signal to noise ratio environments,and has better perceptual performance under low signal to noise ratio conditions.
作者 陈增茂 汪楷淋 孙志国 孙溶辰 阿尔斯楞 CHEN Zengmao;WANG Kailin;SUN Zhiguo;SUN Rongchen;AER Sileng(School of Information and Communication Engineering,Harbin Engineering University,Harbin 150001,China;Key Laboratory of Advanced Marine Communication and Information Technology,Ministry of Industry and Information Technology,Harbin Engineering University,Harbin 150001,China)
出处 《系统工程与电子技术》 EI CSCD 北大核心 2023年第9期2949-2955,共7页 Systems Engineering and Electronics
基金 国家自然科学基金(62001139)资助课题。
关键词 频谱感知 ALPHA稳定分布 分数低阶矩 采样协方差 几何均值 spectrum sensing Alpha stable distributed fractional low order moments sampling covariance geometric mean
  • 相关文献

参考文献4

二级参考文献32

  • 1Sridhara K, Chandra A, and Tripathi P S M. Spectrum challenges and solutions by cognitive radio: an overview [J]. Wireless Personal Communications, 2008, 45(3): 281-291.
  • 2Haykin S. Cognitive radio: brain-empowered wireless communications [J]. IEEE Journal Selected Areas in Commun., 2005, 23(2): 201-220.
  • 3Chen Xiao-fei and Nagaraj S. Entropy based spectrum sensing in cognitive radio [C]. 7th Annual Wireless Telecommunications Symposium, Ponoma, CA, United States, April 2008: 57-61.
  • 4Cabrie D, Mishra S M, and Brodersen R W. Implementation issues in spectrum sensing for cognitive radios [C]. Proc. Asilomar Conf. on Signals, Systems, and Computers, Pacific Grove, CA, United States, Nov. 2004, 1: 772-776.
  • 5Jarmo L, Visa K, Anu H, and Vincent P H. Spectrum sensing in cognitive radios based on multiple cyclic frequencies [C]. Proceedings of the 2nd International Conference on Cognitive Radio Oriented Wireless Networks and Communications, CrownCom, Orlando, FL, United States, August 2007: 37-43.
  • 6Renzo M D, Imbriglio L, and Graziosi F, et al. Cooperative spectrum sensing for cognitive radios: Performance analysis for realistic system setups and channel conditions [M]. Mobile Lightweight Wireless Systems, Berlin, Springer Berlin Heidelberg, 2009: 125-134.
  • 7Lunden J and Koivunen V, et al. Collaborative cyclostationary spectrum sensing for cognitive radio systems [J]. IEEE Transactions on Signal Processing, 2009, 57(11): 4182-4195.
  • 8Hu Z and Guo N, et al. Wideband waveform optimization with energy detector receiver in cognitive radio[C]. IEEE SoutheastCon 2010 Conference: Energizing Our Future, Charlotte-Concord, NC, United States, March 2010: 198-203.
  • 9Danijela C, Artem T, and Brodersen R W. Spectrum sensing measurements of pilot, energy, and collaborative detection[C]. Military Communications Conference 2006, Washington, D.C., United States, 2006: 1-7.
  • 10LIANG Y C, CHEN K C, LI G Y, et al. Cognitive radio networking and communications:An overview[ J ]. IEEE Transactions on Vehic- ular Technology ,2011,60:3386 - 3407.

共引文献58

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部