期刊文献+

融合PCA降维和均值漂移聚类的协同过滤推荐算法 被引量:3

A collaborative filtering recommendation algorithm combining PCA dimension reduction and mean shift clustering
下载PDF
导出
摘要 为了解决传统的协同过滤推荐算法中评分矩阵稀疏及近邻搜索耗时长导致的推荐准确性及时间效率有待提升的问题,设计了一种融合PCA降维和均值漂移聚类的协同过滤推荐算法PMCF。该算法用主成分分析法PCA保留最能代表用户兴趣的维度,以缓解评分矩阵稀疏问题;用均值漂移聚类算法在降维后的低维向量空间上对用户聚类,以减小目标用户最近邻的搜索范围。在Movielens数据集和HetRec2011⁃Movielens⁃2k数据集上的实验结果表明,PMCF算法能够有效地提升推荐结果的准确性,同时具有较高的时间效率。 Traditional collaborative filtering recommendation algorithms have faced the problems of lower accuracy and time efficiency,due to the sparse score matrix and long time⁃consuming neighbor search.This paper proposes a collaborative filtering recommendation algorithm PMCF combining principal component analysis(PCA)dimension reduction and mean shift clustering.In this algorithm,PCA is used to retain the dimension that can best represent the user’s interest,so as to alleviate the problem of sparse score matrix.The mean shift clustering algorithm is used to cluster users in the reduced dimension vector space to reduce the search range of the nearest neighbor of the target user.The experimental results on Movielens dataset and HetRec2011⁃Movielens⁃2k dataset show that the PMCF algorithm can effectively improve the accuracy of recommendation results,and has high time efficiency.
作者 向俊伟 李玲娟 XIANG Junwei;LI Lingjuan(School of Computer Science,Nanjing University of Posts and Telecommunications,Nanjing 210023,China)
出处 《南京邮电大学学报(自然科学版)》 北大核心 2023年第3期90-95,共6页 Journal of Nanjing University of Posts and Telecommunications:Natural Science Edition
基金 国家重点研发计划专项(2020YFB2104002) 江苏省重点研发计划(BE2019740)资助项目。
关键词 协同过滤推荐 均值漂移聚类 主成分分析 collaborative filtering recommendation mean shift clustering principal component analysis
  • 相关文献

参考文献3

二级参考文献29

  • 1杨善林,李永森,胡笑旋,潘若愚.K-MEANS算法中的K值优化问题研究[J].系统工程理论与实践,2006,26(2):97-101. 被引量:192
  • 2刘远超,王晓龙,徐志明,关毅.文档聚类综述[J].中文信息学报,2006,20(3):55-62. 被引量:65
  • 3Konstan J A. Introduction to recommender systems:algorithmsand evaluation [ J ]. ACM Transactions on Information Sys- tems ,2004,22( 1 ) :1-4.
  • 4Bobadilla J, Ortega F, Hernando A, et al. Improving collabora- tive filtering recommender system results and performance u- sing genetic algorithms[ J]. Knowledge-based Systems,2011, 24(8) :1310-1316.
  • 5Bell R M, Koren Y. Improved neighborhood-based collabora- tive filtering[ C]//Proc of 13th ACM SIGKDD international conference on knowledge discovery and data mining. [ s. 1. ] : ACM,2007.
  • 6Liu L M, Zhang P X, Lin L, et al. Research of data sparsity based on collaborative filtering algorithm [ J ]. Applied Me- chanics and Materials ,2014,462:856-860.
  • 7Pirasteh P,Jung J J, Hwang D. Item-based collaborative filte- ring with attribute correlation:a case study on movie recom- mendation [ M]//Intelligent information and database sys- tems. [ s. 1. ] : Springer International Publishing, 2014 : 245 - 252.
  • 8Wang J, Lin K, Li J. A collaborative filtering recommendation algorithm based on user clustering and slope one scheme [ C ]//Proe of 8th international conference on computer sci- ence & education. [ s. 1. ] :IEEE ,2013 : 1473-1476.
  • 9Pitsilis G, Knapskog S J. Social trust as a solution to address sparsity- inherent problems of recommender systems [ C ]/! Proc of ACM recommender system workshop on recommender system & the social web. [ s. 1. ] :ACM,2009:33-40.
  • 10Wei S, Ye N, Zhang S, et al. Collaborative filtering recommen- dation algorithm based on item clustering and global similarity [ C ]//Proc of fifth international conference on business intel- ligence and financial engineering. [ s. 1. ] : IEEE, 2012 : 69 - 72.

共引文献43

同被引文献33

引证文献3

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部