期刊文献+

基于OEDLBP的人脸欺诈检测算法研究

Research on face spoofing detection algorithm based on OEDLBP
下载PDF
导出
摘要 人脸识别技术提高了身份验证的效率,给用户带来快捷方便的体验.但是,当有人试图伪造用户人脸通过系统验证时,就会威胁合法用户的信息和财产安全.针对打印攻击和视频攻击,提出了一种基于奇偶数位像素差异的描述子OEDLBP,该算法将局部偶数位差值模式(EDLBP)、局部奇数位差值模式(ODLBP)和全局特征模式(GBP)结合,利用空间金字塔算法统计彩色图像通道内和通道间特征,将提取到的特征进行融合并用SVM对真假人脸进行分类,在CASIA-FASD、Replay-Attack和Replay-Mobile 3个人脸反欺骗数据库中取得了较好的实验效果. Face recognition technology has improved authentication efficiency and given users a fast and convenient experience.However,when someone tries to fake the user′s face to pass the system verification,it will threaten the user′s information and property security.This paper proposes a descriptor based on odd and even bit difference local binary pattern(OEDLBP)for print and video attacks.The algorithm combines the even-bit difference local pattern(EDLBP),the odd-bit difference local pattern(ODLBP),and the global feature pattern(GBP),and uses the spatial pyramid algorithm to count the intra-channel and inter-channel features of the color image.Then,the extracted features are fused and then classified by SVM.This approach achieves good performance in three challenging face anti-spoofing databases:CASIA FASD,Replay-Attack,and Replay-Mobile.
作者 王艳 夏坤 束鑫 WANG Yan;XIA Kun;SHU Xin(School of Computer,Jiangsu University of Science and Technology,Zhenjiang 212100,China)
出处 《江苏科技大学学报(自然科学版)》 CAS 北大核心 2023年第3期73-80,共8页 Journal of Jiangsu University of Science and Technology:Natural Science Edition
基金 国家自然科学基金资助项目(62276118)。
关键词 人脸欺诈检测 局部二值模式 奇偶位局部二值模式 空间金字塔 彩色空间 face spoofing detection local binary pattern odd and even bit local binary pattern space pyramid color space
  • 相关文献

参考文献6

二级参考文献155

  • 1Ojala T, Pietikinen M, Harwood D. Performance evaluation of texture measures with classification based on Kullback discrimi- nation of distributions [ C ] // Proceedings of the 12th Interna- tional IAPR Conference on Pattern Recognition. Jerusalem, Pal- estine: IEEE Computer Society, 1994, 1:582-585.
  • 2Pietikinen M, Ojala T, Nisula J, et al. Experiments with two in- dustrial problems using texture classification based on feature dis- tributions [ C ] //Proceedings of SPIE 2354, Intelligent Robots and Computer Vision XIII: 3D Vision, Product Inspection, and Active Vision. Boston, MA: IEEE Computer Society, 1994-, 2354 : 197-204.
  • 3Ojala T, Pietikinen M, Menp T. Multiresolution gray scale and rotation invariant texture classification with local binary patterns [ J ]. IEEE Trans. Pattern Analysis and Machine Intelligence, 2002, 24 (7) : 971-987.
  • 4Ojala T, Pietikinen M, Menp T. Gray scale and rotation invari- ant texture classification with local binary patterns [ C ] // Pro- ceedings of IEEE European Conference on Computer Vision, Lecture Notes in Computer Science. Berlin Heidelberg: Spring- er, 2000, 1842: 404-420.
  • 5Pietikinen M, Nurmela T, Menp T, .et al. View-based recogni- tion of real-world textures [ J ]. Pattern Recognition, 2004, 37(2) : 313-323.
  • 6Ojala T, Pietikinen M, Harwood D. A comparative study of tex- ture measures with classification based on feature distributions [J]. Pattern Recognition, 1996, 29(1): 51-59.
  • 7Li S Z, Jain A K. Handbook of Face Recognition [ M]. Berlin, Germany: Springer-Verlag, 2004.
  • 8Ahonen T, Hadid A, Pietikinen M. Face description with local binary patterns: application to face recognition [ J]. IEEE Trans. on Pattern Analysis and Machine Intelligence, 2006, 28(12) : 2037-2041.
  • 9Pietikinen M, Ojala T, Xu Z. Rotation-invariant texture classifi- cation using feature distributions [ J ]. Pattern Recognition, 2000, 33(1) : 43-52.
  • 10Gong P, Marcean D J, Howarth P J. A comparison of spatial fea- ture extraction algorithms for land-use classification with SPOT HRV data [ J ]. Remote Sensing of Environment, 1992, 40 : 137-151.

共引文献117

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部