摘要
在采煤机运动特征的基础上,建立了基于捷联惯导的采煤机运行姿态感知系统,实时监测采煤机的运行姿态参数,分析了采煤机运行姿态感知系统的误差效应,建立了误差补偿模型。利用高精度陀螺仪、加速度计等惯性导航仪表,进行了采煤机运行姿态感知实验,在惯性仪表零偏补偿、卡尔曼滤波等误差补偿基础之上,对实验结果进行了深入研究。结果表明:与传统采煤机运行姿态监测技术相比,基于捷联惯导的采煤机运行姿态感知技术能够准确描述采煤机在工作面的运动特征与进刀特征,还可以实现对采煤机更高精度的运行姿态感知。研究成果满足了矿井采煤机运行姿态感知的实时性、精确性和可靠性要求,为我国煤矿智能化建设提供研究基础与技术补充。
The paper develops a shearer running attitude sensing system based on a strapdown inertial navigation system(SINS)to monitor the shearer running attitude parameters in real time.It also analyzes the error effect of the shearer running attitude sensing system and develops an error compensation model.Experiments on shearer running attitude sensing were conducted using inertial navigation instruments such as high-precision gyroscopes and accelerometers,and the experimental results were thoroughly studied on the basis of error compensation such as zero bias compensation and Kalman filtering of inertial instruments.The results show that the shearer running attitude sensing technology based on SINS can achieve higher accuracy of shearer running attitude sensing and more accurately describe the shearer movement characteristics and feeding characteristics at the working face than the traditional shearer running attitude monitoring technology.The research results lay a research foundation and technological supplement for China's intelligent construction of coal mines,which satisfies the demands of real-time,accuracy,and reliability of shearer running attitude sensing.
作者
吴刚
方新秋
宋扬
梁敏富
陈宁宁
WU Gang;FANG Xinqiu;SONG Yang;LIANG Minfu;CHEN Ningning(School of Mines,China University of Mining and Technology,Xuzhou,Jiangsu 221116,China;Research Center of Intelligent Mining,China University of Mining and Technology,Xuzhou,Jiangsu 221116,China)
出处
《采矿与安全工程学报》
EI
CSCD
北大核心
2023年第4期668-678,共11页
Journal of Mining & Safety Engineering
基金
国家自然科学基金项目(52104167,51874276,52004273)
江苏省自然科学基金项目(BK20200639)
中国博士后科学基金项目(2019M661992)。
关键词
智能化开采
捷联惯导系统
采煤机
运行姿态感知
误差分析
intelligent mining
strapdown inertial navigation system
shearer
running attitude sensin error analysis