期刊文献+

MXene层状膜负载低共熔溶剂及气体分离性能的研究

Study of deep eutectic solvent-loaded MXene lamellar membrane and gas separation performance
下载PDF
导出
摘要 二维层状膜在气体分离中的高效传递归因于连续规整的层间通道,然而纳米片的局部低效率堆积在制膜放大时难以避免,这将导致缺陷产生和气体分离效率的严重下降.基于此,制备了一系列低共熔溶剂插层的磺化MXene层状膜.以亲CO_(2)的磺化MXene二维层状膜作为骨架,通过在二维通道内搭载低共熔溶剂来降低层间缺陷的产生.所制备的低共熔溶剂插层的MXene层状膜在湿态下具有良好的CO_(2)渗透性和CO_(2)/N_(2)选择性,其中,T@MX/ChCl∶MEA和T@MX/TEPA.Cl∶EG在湿态下CO_(2)渗透速率分别达到了513和493 GPU,CO_(2)/N_(2)选择性为191.4和204.8.本研究旨在探究“水促进CO_(2)传递”机制在载液MXene二维通道内的可行性,同时也为以MXene为基础的膜设计和制造提供了一种新的策略. The continuous and regular interlayer channels are attributed with facilitating the efficient transfer of two-dimensional lamellar membranes in gas separation.However,the low efficiency of local nanosheet packing is inevitable,which can significantly lower the gas separation performance.Accordingly,a number of deep eutectic solvent intercalated sulfonated MXene lamellar membranes were created.By carrying a deep eutectic solvent in the 2D channel,interlayer defects were prevented by using a sulfonated MXene membrane as the skeleton.The deep eutectic solvent interlayer-prepared MXene lamellar membranes have good CO_(2)permeance and selectivity in wet state(CO_(2)/N_(2)selectivity of 191.4 and 204.8 and CO_(2)permeance of 513 and 493 GPU for T@MX/ChCl:MEA and T@MX/TEPA.Cl:EG membrane,respectively).This study is expected to evaluate the feasibility of the"water-facilitated CO_(2)transfer"mechanism in the two-dimensional MXene channel and to propose a fresh approach to the development of MXene-based membranes.
作者 武丹 贾佑雨 李奕帆 WU Dan;JIA Youyu;LI Yifan(School of Chemical Engineering,Zhengzhou University,Zhengzhou 450001,China)
出处 《膜科学与技术》 CAS CSCD 北大核心 2023年第4期10-20,共11页 Membrane Science and Technology
基金 国家自然科学基金项目(21878277) 河南省大学科技创新人才计划项目(21HASTIT002)。
关键词 MXene层状膜 低共熔溶剂 气体分离 MXene lamellar membrane deep eutectic solvent gas separation
  • 相关文献

参考文献7

二级参考文献42

  • 1王志,杨东晓,张晨昕,王纪孝,王世昌.分离二氧化碳膜过程技术经济分析[J].化工进展,2009,28(S2):409-410. 被引量:8
  • 2Baker R. W., Industrial and Engineering Chemistry Research, 2002, 41(6), 1393—1411.
  • 3Hashim S. S., Mohamed A. R., Bhatia S., Renewable and Sustainable Energy Reviews, 2011, 15, 1284—1293.
  • 4Robeson L. M., Journal of Membrane Science, 2008, 320, 390—400.
  • 5Chung T. S., Jiang L. Y., Li Y., Kulprathipanja S., Progress in Polymer Science, 2007, 32(4), 483—507.
  • 6Nasir R., Mukhtar H., Man Z., Mohshim D. F., Chemical Engineering & Technology, 2013, 36(5), 717—727.
  • 7Xu D., Wang Y., Zhang Y., Zhang G., Shao K., Li S. W., Na H., Chem. Res. Chinese Universities, 2010, 26(6), 1031—1034.
  • 8Li J. R., Kuppler R. J., Zhou H. C., Chemical Society Reviews, 2009, 38, 1477—1504.
  • 9Na L. Y., Hua R. N., , Ning G. L., Ou X. X., Chem. Res. Chinese Universities, 2012, 28(4), 555—558.
  • 10Zornoza B., Tellez C., Coronas J., Gascon J., Kapteijn F., Microporous and Mesoporous Materials, 2013, 166, 67—78.

共引文献53

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部