期刊文献+

基于改进型Faster R-CNN的行人目标检测

Pedestrian Target Detection Based on Improved Faster R-CNN
下载PDF
导出
摘要 在行人目标检测中,小尺度、低像素的行人目标检测和行人遮挡等问题是模型训练的难点。针对深度学习Faster R-CNN网络对小尺度行人以及遮挡行人目标检测效果较差的情况,提出一种基于soft-NMS、GIoU和多尺度训练方法的改进型Faster R-CNN行人目标检测模型。在该改进模型中,Soft-NMS缓解行人密集检测中的因遮挡导致的漏检情况,GIoU对网络的损失计算进行改进,提升网络检测效果,多尺度训练方式能够提升小尺度与低像素的行人目标检测的准确率。仿真实验结果验证了该方法的有效性,改进的Faster R-CNN模型在Caltech行人数据集上的检测精度由64.2%提升到了70.4%,且在漏检率和误检率上都优于传统Faster R-CNN模型。 In pedestrian target detection,small-scale and low-pixel pedestrian target detection and pedestrian occlusion are the diffi‐culties of model training.To address the poor detection effect of the deep learning Faster R-CNN network on small-scale and occluded pedestrian targets,an improved Faster R-CNN pedestrian target detection model based on soft-NMS,GIoU and multi-scale training methods is proposed.In this improved model,Soft-NMS alleviates missed detection caused by occlusion in dense pedestrian detection.GIoU improves the loss calculation of the network and improves the network detection effect.The multi-scale training method can im‐prove the accuracy of small-scale and low-pixel pedestrian target detection.Simulation results verify the effectiveness of the method.The detection accuracy of the improved Faster R-CNN model on the Caltech pedestrian data set increased from 64.2%to 70.4%,and both missed detection rate and false detection rate were better than those of the traditional Faster R-CNN model.
作者 谢子轶 许玉格 XIE Ziyi;XU Yuge(School of Automation Science and Engineering,South China University of Technology,Guangzhou 510640,Guangdong,China)
出处 《惠州学院学报》 2023年第3期28-34,共7页 Journal of Huizhou University
基金 国家自然科学基金(62101207) 广东省教育厅自然科学基金(2020KQNCX081)。
关键词 深度学习 Faster R-CNN Soft-NMS GIoU deep learning Faster R-CNN Soft-NMS GIoU
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部