期刊文献+

基于机器视觉的轴承表面微小缺陷检测技术 被引量:2

Slight Defects Detection Technology of Bearing Surface Based on Machine Vision
下载PDF
导出
摘要 轴承表面缺陷检测要求准确率较高,因此研究基于机器视觉的轴承表面微小缺陷检测技术。使用CMOS工业相机采集轴承表面图像,利用线性拉伸法与中值滤波方法预处理轴承表面图形,提升图像的亮度并消除干扰信息,使用八连通区域标记法标记处理后的轴承表面图像,获得连通区域数量,使用该数量计算得出缺陷特征的面积、长宽比、周长等几何特征,将这些特征作为剪枝分类决策树的输入,经过训练后,输出轴承表面微小缺陷分类结果,实现轴承表面微小缺陷检测。试验结果显示,该方法预处理后,图像质量较高,能够检测出轴承表面多种微小缺陷,并且检测结果准确率较高。 Bearing surface defect detection requires high accuracy,so the bearing surface small defect detection technology based on machine vision is studied.Using CMOS industrial camera image acquisition bearing surface,using the method of linear stretch preprocessing bearing surface graphics with median filtering methods,improve the brightness of the image information and eliminate interference,using eight connected area method of marking the bearing surface of the image after processing,get connected area number,use the number calculated the area of the defect feature,aspect ratio,perimeter,such as geometric features.These features are used as the input of pruning classification decision tree.After training,the classification results of bearing surface minor defects are output to realize bearing surface minor defects detection.The test results show that the image quality of the method is higher after preprocessing,and it can detect a variety of small defects on the bearing surface,and the detection accuracy is higher.
作者 唐艺明 TANG Yiming(Zhangzhou Institute of Technology,Zhangzhou Fujian 363005,China)
出处 《佳木斯大学学报(自然科学版)》 CAS 2023年第4期102-105,共4页 Journal of Jiamusi University:Natural Science Edition
基金 漳州职业技术学院2021年校级课题(ZZY2021B041)。
关键词 机器视觉 轴承表面 微小缺陷 线性拉伸法 特征提取 剪枝分类决策树 machine vision bearing surface slight defect linear stretching method feature extraction pruning the classification decision tree
  • 相关文献

参考文献2

二级参考文献19

共引文献18

同被引文献40

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部