期刊文献+

基于激光雷达的智慧交通信息采集算法 被引量:2

Intelligent Traffic Information Acquisition Algorithm Based on LiDAR
下载PDF
导出
摘要 针对智慧交通信息采集的实时性和准确性要求,提出了一种基于点云处理的交通路口运动物体的信息采集算法。首先通过VLP-16激光雷达采集路口的点云数据,利用kd-tree优化的帧差法对其进行背景点云的提取和滤除,以得到路口运动物体的点云,再采用dbscan聚类对运动物体的点云进行分割,得到每个单独物体的点云聚类,最后通过PCA算法对每个物体的点云的位置和姿态进行估计。实验证明了kd-tree优化后的帧差法用时只需要0.758 s,速度提升了78.5%,更符合智能交通的实时性要求,同时,PCA对物体位置的估计偏差在1 m以内,偏移角度在2°以内,采用PCA方法对路口运动物体姿态估计的精度较高,符合智能交通数据的准确性要求。 A point cloud processing-based information collection algorithm for moving objects at traffic intersections is proposed for the real-time and accuracy requirements of intelligent traffic information collection.Firstly,the point cloud data of the intersection is collected by VLP-16 LiDAR,and the background point cloud is extracted and filtered using the kd-tree optimized frame difference method to obtain the point clouds of moving objects at the intersection,and then the point clouds of moving objects are segmented using dbscan clustering to obtain the point cloud clusters of each individual object,and finally the position and pose of each object's point cloud are estimated by the PCA algorithm estimation.The experiment proves that the kd-tree optimized frame difference method takes only 0.758 seconds,which improves the speed by 78.5% and is more relevant to the real-time requirements of intelligent traffic.Meanwhile,the deviation of PCA's estimation of object position is within 1 meter and the offset angle is within 2 degrees,and the accuracy of estimating the pose of moving objects at intersections by PCA method is high,which meets the accuracy requirements of intelligent traffic data.
作者 刘亚洲 邓安健 LIU Yazhou;DENG Anjian(School of Surveying and Land Information Engineering,Henan Polytechnic University,Jiaozuo 454003,China)
出处 《测绘与空间地理信息》 2023年第8期93-97,102,共6页 Geomatics & Spatial Information Technology
基金 河南省自然科学基金面上项目(182300410113) 河南理工大学博士基金(B2017-08)资助。
关键词 激光雷达 智慧交通 点云处理 KD-TREE DBSCAN PCA LiDAR intelligent traffic point cloud processing kd-tree dbscan PCA
  • 相关文献

参考文献10

二级参考文献84

共引文献185

同被引文献14

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部