期刊文献+

基于大数据背景下的校园供水量统计模型

Statistical Model of Campus Water Supply Based on Big Data
下载PDF
导出
摘要 校园供水系统是校园公用设施的重要组成部分,它直接影响着全体师生的日常工作、学习和生活。随着科技的快速发展,校园内智能水表得到普遍使用,获取了大量实时供水系统运行数据。本文基于2020年全国大学生数学建模竞赛试题E题数据,借助数学建模和数据挖掘技术,通过对各个水表数据变化规律和校园内不同功能区用水特征的分析,建立了水表数据间的关系模型并分析了模型误差,分析了供水管网的漏损情况,确定了漏损位置,并提出了解决管网漏损问题的最优方案。该方案解决了供水系统中存在的问题,提高了校园服务和管理水平。 Campus water supply system is an important part of campus public facilities,which directly affects the daily work,study and life of all teachers and students.With the rapid development of science and technology,intelligent water meters on campus are widely used,and a large number of real-time water supply system operation data are obtained.In this paper,based on the data of the E question in the 2020 National Mathematical Modeling Competition for College Students,with the help of mathematical modeling and data mining technology,through the analysis of the variation law of each water meter data and the characteristics of water consumption in different functional areas on campus,the relationship model between water meter data is established,the model error is analyzed,the leakage situation of water supply network is analyzed,the leakage location is determined,and the optimal scheme to solve the leakage problem of water supply network is put forward.This scheme solves the problems existing in the water supply system and improves the level of campus service and management.
作者 刘娟宁 LIU Juan-ning(Primary School Education College,Xianyang Vocational Technical College,Xianyang 712000,China)
出处 《价值工程》 2023年第24期86-90,共5页 Value Engineering
基金 陕西省职业技术教育学会2022年度课题(2022SZX297) 咸阳职业技术学院2021年度课程思政示范项目建设(咸职院教字〔2022〕51号)。
关键词 EXCEL 数据挖掘 MATLAB 用水特征 EXCEL data mining MATLAB water characteristics
  • 相关文献

参考文献3

二级参考文献17

  • 1王建平,程声通,贾海峰.基于MCMC法的水质模型参数不确定性研究[J].环境科学,2006,27(1):24-30. 被引量:45
  • 2白丹.树状给水管网的优化[J].水利学报,1996,28(11):52-56. 被引量:31
  • 3Thiemann M,Trosset M,Gupta H,et al. Bayesian recur- sire parameter estimation for hydrologic models [ J ]. Water Resour Res,2001,37(10) :2521 -2535.
  • 4Kapelan Z S,Savic D A,Wahers G A. Multiobjective sampling design for water distribution model calibration [J]. J Water Resour Planning Manage,2003,129 (6) : 466 - 479.
  • 5Aronica G, Bates P D, Horritt M S. Assessing the uncer- tainty in distributed model predictions using observed bi- nary pattern information within GLUE [ J ]. Hydrol Processes ,2002,16:2001 - 2016.
  • 6Vrugt J A,Bouten W,Gupta H V, et al. Toward im- proved identifiability of hydrologic model parameters: the information content of experimental data[ J]. Water Re- sour Res,2002,35(12) :1312 - 1316.
  • 7Gupta H,Thiemann M,Trosset M,et al. Reply to com- ment by K. Beven and P. Young on "Bayesian recursive parameter estimation for hydrologic models" [ J ~. Water Resour Res,2003,39 ( 5 ) : 11 - 17.
  • 8Misirli F, Gupta H V, Sorooshian S, et al. Bayesian re- cursive estimation of parameter and output uncertainty for watershed models [ A ~. Calibration of Watershed Mod- els, Water Science and Application,v. 6 [ C ]. Washing- ton : AGU,2003.
  • 9Savic D A. Single-objective vs. multiobjective optimisa- tion for integrated decision support [ AI. Proceeding of the First Biennial Meeting of the International Environ- mental Modelling and Software Society [ C 1- LuganoL: iEMSs ,2002.
  • 10Farmani R,Savic D A,Walters G A. Evolutionary multi- objective optimization in water distribution network de- sign[J]. EngOptim,2005,37(2):167-183.

共引文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部