期刊文献+

基于改进SSD的输电线路防振锤缺陷检测

Defect detection of transmission line damper based on improved SSD
原文传递
导出
摘要 随着人工智能的发展,图像识别技术逐渐应用于智能电网无人机巡检的防振锤缺陷检测中。但是由于防振锤体积很小,像素信息少,目前的检测效果还不够理想。为了解决该问题,提出构建一种改进的SSD(Single Shot MultiBox Detector)深度学习神经网络模型去进行防振锤缺陷检测。在特征提取阶段,加入超大卷积核去大大提升网络的感受野;在预测回归阶段,引入SIOU目标框损失函数去提高网络的收敛性。实验结果表明,改进模块能提高SSD网络的检测精度,改进SSD模型的mAP为96.9%,优于现阶段其他主流目标检测模型,由此验证了所提方法的准确性和实用性。 With the development of artificial intelligence,image recognition technology has been gradually applied to the defect detection of damper in UAV patrol inspection of smart grid.However,due to the small volume of damper and the lack of pixel information,the current detection effect is not ideal.In order to solve this problem,an improved SSD(Single Shot MultiBox Detector)deep learning neural network model is proposed to detect the defects of damper.In the feature extraction stage,super convolution kernel is added to greatly enhance the receptive field of the network;In the prediction and regression stage,SIOU target frame loss function is introduced to improve the convergence of the network.The experimental results show that the improved module can improve the detection accuracy of SSD network,and the mAP of the improved SSD model is 96.9%,which is superior to other mainstream target detection models at this stage,thus verifying the accuracy and practicality of the proposed method.
作者 方毅 FANG Yi(School of Electrical and Information Technology,Yunnan Minzu University,Kunming 650504,China)
出处 《自动化与仪器仪表》 2023年第7期227-230,共4页 Automation & Instrumentation
基金 国家自然科学基金(61866040)。
关键词 防振锤 超大卷积核 SIOU 改进SSD damper super convolution kernel SIOU improved SSD
  • 相关文献

参考文献5

二级参考文献46

  • 1罗啸宇,张宜生,谢书鸿,李新春,徐志磊,刘丽君.防振锤非线性阻抗实验研究及参数识别[J].振动与冲击,2013,32(11):182-185. 被引量:10
  • 2张运楚,梁自泽,傅思遥,谭民,吴功平.基于结构约束的架空输电线路巡线机器人障碍识别[J].机器人,2007,29(1):1-6. 被引量:24
  • 3Sawada J, Kusumoto K Munakata T. A mobile robot for inspection of Power transmissions [ J ] . IEEE Transactions on Power Delivery, 1991,6( 1 ) :309 - 315.
  • 4XU L,OJA E A new curve detection method:Randomized Hough Transform ( RHT ) [J].Pattern Recognition Letters, 1990,11 (5) :331 -338.
  • 5Lienhart R, Maydt J. An Extended Set of Haar-Like Features for Rapid Object Detection [C]//The IEEE International Conference on Image Processing, New York, USA, 2002. USA: IEEE, 2002.
  • 6Viola P, Jones M. Rapid Object Detection Using a Boosted Cascade of Simple Features [C]// International Conference on Computer Vision and Pattern Recognition, Kauai, USA, 2001. USA: IEEE, 2001: 511-518.
  • 7Viola P, Jones M. Robust Real-Time Face Detection [J]. International Journal of Computer Vision (S0920-5691), 2004, 57(2): 137-154.
  • 8Papageorgiou C P, Oren M, Poggio T. A General Framework for Object Detection [C]//The 6th International Conference on Computer Vision, Bombay, India, 1998. India: IEEE, 1998: 555-562.
  • 9Schneiderman H. A Statistical Approach to 3D Object Detection Applied to Faces and Cars [C]// IEEE Conference on Computer Vision and Pattern Recognition, USA, 2000. USA: IEEE, 2000.
  • 10Rowley H A, Baluja S, Kanade T. Neural Network-Based Face Detection [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence (S0162-8828), 1998, 20(1): 22-38.

共引文献51

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部