期刊文献+

椰壳炭作为锂离子电池负极材料的电化学性能研究

Electrochemical Performance of Coconut Shell Carbon as Anode Material for Lithium⁃Ion Batteries
下载PDF
导出
摘要 以椰壳为原料,采用高温热解法和活化法制备了椰壳活性炭负极材料。通过X射线衍射、拉曼光谱、扫描电子显微镜、循环伏安法和电化学阻抗谱图等手段考察了活化处理对椰壳炭结构、形貌以及电化学性能的影响。结果表明,经活化处理的椰壳炭无序化程度高,富含微孔、介孔多孔结构,在0.1 A/g电流密度下,首次放电比容量达到918.22 mAh/g,在1 A/g电流密度下循环200次后放电比容量仍有447 mAh/g。 Activated carbon derived from coconut shell was prepared as anode material by adopting high temperature pyrolysis and activation.The effects of activation on the structure,morphology and electrochemical properties of coconut shell carbon were investigated by using X⁃ray diffraction,Raman spectroscopy,scanning electron microscopy,cyclic voltammetry and electrochemical impedance spectroscopy.The results show that the coconut shell carbon after activation process is highly disordered,and also microporous and mesoporous.It delivers an initial discharge specific capacity of 918.22 mAh/g at a current density of 0.1 A/g,and retains a specific capacity of 447 mAh/g after 200 cycles discharge at a current density of 1 A/g.
作者 张舰 陈旭 史世和 白世伟 陈庆荣 钟胜奎 刘洁群 ZHANG Jian;CHEN Xu;SHI Shihe;BAI Shiwei;CHEN Qingrong;ZHONG Shengkui;LIU Jiequn(College of Marine Science and Technology,Hainan Tropical Ocean University,Sanya 572022,Hainan,China;Yazhouwan Research Institute of Innovation,Hainan Tropical Ocean University,Sanya 572022,Hainan,China)
出处 《矿冶工程》 CAS 北大核心 2023年第4期169-173,共5页 Mining and Metallurgical Engineering
基金 国家自然科学基金(52074099,52164029) 海南省自然科学基金(821MS0782,221MS048,221RC585) 海南热带海洋学院引进人才科研启动资助项目(RHDRC202002) 海南省大学生创新创业训练计划(S202111100049)。
关键词 锂离子电池 负极材料 椰壳炭 电化学性能 活性炭 lithium⁃ion battery anode material coconut shell carbon electrochemical performance activated carbon
  • 相关文献

参考文献9

二级参考文献185

  • 1金明钢.阴极导电剂含量对锂离子蓄电池性能的影响[J].电源技术,2005,29(2):78-79. 被引量:9
  • 2刘希邈,詹亮,滕娜,杨登莲,曾小春,张睿,凌立成.超级电容器用沥青焦基活性炭的制备及其电化学性能[J].新型炭材料,2006,21(1):48-53. 被引量:39
  • 3CHANG J C, TZENG T Y, CHEN J M, et al. Carbon nanobeads as an anode material on high rate capability lithium ion batteries [J]. Electrochimica Acta, 2009, 54(27): 7066-7070.
  • 4SHAJUA K M, BRUCE P G. Macroporous Li(Ni1/3Co1/3Mnl/3)O2: A high-rate positive electrode for rechargeable lithium batteries [J]. J Power Sources, 2007, 174(2): 1201-1205.
  • 5KONAROVAA M, TANIGUCHI I. Synthesis of carbon-coated LiFePO4 nanoparticles with high rate performance in lithium secondarybatteries[J]. J Power Sources, 2010, 195(11): 3661-3667.
  • 6GAO J,YING J R,JIANG CY,et al.High-density spherical Li4Ti5O12/C anode material with good rate capability for lithium ion batteries[J]. J Power Sources, 2007, 166(1):255-259.
  • 7ZHU N, LIU W, XUE M Q, et al. Graphene as a conductive additive to enhance the high-rate capabilities of electrospun Li4Ti5O12 for lithium-ion batteries[J]. Electrochimica Acta, 2010, 55(20): 5813- 5818.
  • 8WANG G P, ZHANG Q T, YU Z L, et al. The effect of different kinds of nano-earbon conductive additives in lithium ion batteries on the resistance and electrochemical behavior of the LiCoO2 com- posite cathodes[J]. Solid State Ionics, 2008, 179(7/8):263-268.
  • 9HUANG S H, WEN Z Y, YANG X L. Improvement of the high-rate discharge properties of LiCoO2 with the Ag additives [J]. J Power Sources, 2005, 148(1): 72-77.
  • 10TOBISHIMA S,ARAKAWA M,YAMAKI J. Ethylene carbonate/ linear-structured solvent mixed electrolyte systems for high-rate se- condary lithium batteries[J]. Electrochimica Acta, 1999, 35(2): 383- 388.

共引文献90

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部