期刊文献+

基于转移脉冲火花放电通道的金属悬垂结构无支撑熔丝增材成形研究

Research on the Machining of Unsupported Fused Wire Additive for Metal Suspension Structures Based on Transfer Pulse Spark Discharge Channel
下载PDF
导出
摘要 针对电弧熔丝增材制造过程中高水平热输入带来的成形过程不稳定、微观组织不精细以及拉伸强度较低等问题,提出了一种以脉冲火花放电通道为热源的新型金属增材制造方法,此法火花放电通道形成在エ具电极与金属丝材之间,之后膨胀并转移至工具电极和成形件之间,有效降低了成形过程中的热输入。通过将该法应用于悬垂结构的无支撑成形,以倾斜角为45°的单元杆为研究对象,研究了放电电流、脉冲宽度、脉冲间隔、送丝速度和扫描速度对成形精度和形貌的影响,进而成功实现了倾斜角为0°~90°细长杆及体心立方点阵结构的无支撑增材制造。 To address the problems of the unstable forming process,coarse microstructures and low tensile strength caused by high-level heat input in wire arc additive manufacturing,a new metal additive manufacturing method that uses a pulse spark discharge channel as a heat source was proposed.In this method when a pulse voltage is formed,the arc plasma is initially ignited between the tungsten electrode and the filler wire and then gradually transferred to the gap between the tungsten electrode and the deposited layer,which effectively reduces the heat input during the forming process.By applying this method to the unsupported forming of suspended metal structures,the effects of discharge current,pulse width,pulse interval,wire feeding speed and scanning speed on the forming accuracy and morphology of unit rods with a tilt angle of 45°were studied.Subsequently,the unsupported metal additive manufacturing of slender rods with angles of 0°~90°and body-centered cubic lattice structures was successfully achieved.
作者 庄津 段晓明 杨海欧 杨晓冬 ZHUANG Jin;DUAN Xiaoming;YANG Haiou;YANG Xiaodong(School of Mechatronics Engineering,Harbin Institute of Technology,Harbin 150001,China;School of Materials Science and Engineering,Northwestern Polytechnical University,Xi'an 710068,China)
出处 《电加工与模具》 2023年第4期51-56,共6页 Electromachining & Mould
基金 国家自然科学基金项目(51875133) 黑龙江省自然科学基金项目(LH2020E038) 数字制造装备与技术国家重点实验室开放项目(DMETKF2021025) 西北工业大学凝固技术国家重点实验室开放项目(SKLSP202322)。
关键词 电弧熔丝增材制造 脉冲火花放电通道 无支撑 wire arc additive manufacturing pulse spark discharge channel unsupported
  • 相关文献

参考文献2

二级参考文献11

  • 1Zhang Haiou, Xu Jipeng, Wang Guilan. Fundamental Study on Plasma Deposition Manufacturing.Surface and Coatings Technology, 2002;, 171 (1--3):112-118.
  • 2Nakagawa Takeo. Advances in Prototype and Low Volume Sheet Forming and Tooling. Journal of Materials Processing Technology, 2000, 98 (2) :244-250.
  • 3Zhou Jack G, He Zongyan. Rapid Pattern Based Powder Sintering Technique and Related Shrinkage Control. Materials and Design, 1998, 19(5-6):241 -248.
  • 4Anon. From the Inside out: LENS Fuels Paradigm Shift in Modern Manufacturing. Metal Powder Report, 2000,55(9): 32-35.
  • 5Mazumder J, Choi J, Nagarathnam K, et al. Direct Metal Deposition of H13 Tool Steel for 3-D Components. JOM, 1997, 49(5): 55-60.
  • 6Mah, Richard. Directed Light Fabrication. Advanced Materials N. Processes, 1997, 151 (3) : 31-33.
  • 7Zhang Y,Li P, Chen Y, et al. Automated System for Welding- based Rapid Prototyping. Mechatronics, 2002,12(1): 37-53.
  • 8Segal F I, Campbell R I. A review of research into the effects of rapid tooling on part properties [J]. Rapid Prototyping Journal, 2001, 7(2): 90-98.
  • 9Cooper K G, Rapid Prototyping Technology: Selection and Application [M]. Marcel Dekker Inc. , New York, 2001.
  • 10毛宽民,师汉民,唐小琦,陈吉红.激光三维内割技术——一种新型的快速原型技术[J].中国机械工程,2001,12(5):518-520. 被引量:3

共引文献33

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部