期刊文献+

基于电荷转移的分子基铁电和磁电材料

Molecular ferroelectrics and magnetoelectrics based on charge–transfer
原文传递
导出
摘要 电荷转移行为在分子基材料的自旋双稳态、价态互变等诸多体系中一直发挥着关键作用,基于分子基化合物中电荷转移构筑铁电和磁电材料是近年来新发展的研究方向,并吸引化学、材料及物理研究者们的广泛关注.相对于传统的铁电和磁电材料发生机制,电荷转移引发或诱导的分子铁电和磁电材料,在加快器件运行速度的同时,可以实现局域磁矩的调控,因而通过外场调控有望实现磁电耦合.本文就基于电荷转移引发或诱导的分子基铁电和磁电材料研究体系进行分类,并进行系统性论述.此外,还提出个人观点,对当前领域的发展前景进行展望,希望能够为相关领域的研究者提供一些启示或参考. The charge-transfer behavior has always played a key role in spin bistability,valence tautomerization and other systems of molecular-based materials.Designing ferroelectric and magnetoelectric materials based on the chargetransfer behavior in molecular-based compounds has become a new research direction in recent years,and has attracted extensive attention from researchers in chemistry,materials,and physics.Compared with the traditional ferroelectric and magnetoelectric generation mechanisms,molecular-based ferroelectrics and magnetoelectrics triggered or induced by the charge-transfer can accelerate the running speed of devices while realizing local magnetic moment regulation.Therefore,magnetoelectric coupling is expected to be realized through external field regulation.In this paper,molecular-based ferroelectric and magnetoelectric materials initiated or induced by the charge-transfer are classified and systematically discussed.In addition,it presents personal opinions and prospects,aiming to provide some useful references for researchers in this area.
作者 刘祯 李智睿 唐正骁 齐彤旭 赵海霞 龙腊生 郑兰荪 Zhen Liu;Zhi-Rui Li;Zheng-Xiao Tang;Tong-Xu Qi;Hai-Xia Zhao;La-Sheng Long;Lan-Sun Zheng(College of Chemistry and Chemical Engineering,Xiamen University,Xiamen 361005,China)
出处 《中国科学:化学》 CAS CSCD 北大核心 2023年第8期1355-1368,共14页 SCIENTIA SINICA Chimica
基金 国家自然科学基金资助项目(编号:92061107,21431005,21721001)。
关键词 分子基材料 电荷转移 磁电效应 铁电 molecular-based materials charge transfer magnetoelectric effect ferroelectric
  • 相关文献

参考文献5

二级参考文献344

  • 1迟振华,靳常青.单相磁电多铁性体研究进展[J].物理学进展,2007,27(2):225-238. 被引量:29
  • 2Kimura T, Lashley J C, Ramirez A. Inversion-symmetry breaking in the noncollinear magnetic phase of the triangular-lattice antiferromagnet CuFeO2. Pbys Rev B, 2006, 73:220401 (R).
  • 3Ye F, Fernandez-Baca A, Fishman R S, et al. Magnetic interactions in the geometrically frustrated triangular lattice antiferromagnet CuFeO2. Phys Rev Lett, 2007, 99:157201.
  • 4Lawes G, Kenzelamnn M, Rogada N, et al. Competing magnetic phases on a kagome staircase. Phys Rev Lett, 2004, 93:247201.
  • 5Lawes G, Harris A B, Kimura T, et al. Magnetically driven ferroelectric order in Ni3V2O8. Phys Rev Lett, 2005, 95:087205.
  • 6Kimura T, Goto T, Shintani H, et al. Magnetic control of ferroelectric polarization. Nature, 2003, 426: 55- 58.
  • 7Goto T, Lawes G, Ramirez A P, et al. Electricity and giant magnetocapacitance in perovskite rare-earth manganites. Phys Rev Lett, 2004, 92:257201.
  • 8Arima T, Goto T, Yamasaki Y, et al. Magnetic-field-induced transition in the lattice modulation of colossal magnetoelectric GdMnO3 and TbMnO3 compounds. Phys Rev B, 2005, 72: 100102(R).
  • 9Hemberger J, Schrettle F, Pimenov A, et al. Multiferroic phases of Eu1-xYxMnO3. Phys Rev B, 2006, 75:035118.
  • 10Yamosoki Y, Sagayama H, Goto T, et al. Electric control of spin helicity in a magnetic ferroelectric. Phys Rev Lett, 2007, 98:147204.

共引文献87

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部