期刊文献+

基于序列霍夫变换的多模型滤波算法

Multi-model Filtering Algorithm Based on Sequential Hough Transform
下载PDF
导出
摘要 针对目标运动复杂多变的滤波问题,在序列霍夫变换的基础上,研究了多模型滤波算法,提出了一种基于序列霍夫变换理论的多模型滤波算法。该算法将最常用的多种目标运动模型进行组合,构建为目标运动模型集,将目标模型的索引参数扩充至目标状态,使得目标状态可以根据模型转移概率在运动模型集中进行切换。在非线性条件下将其实现,仿真分析结果表明,该算法能够在目标新生信息及目标运动模型均未知的前提下完成对多目标的跟踪。 In order to solve the complex filtering problem of the target motion,a multi-model filtering algorithm based on sequential Hough transform theory is proposed.The most commonly used multiple target motion models are combined by the algorithm to construct a target motion model set,and the index parameters of the target model are expanded to the target state,so that the target state can be switched in the motion model set according to the model transition probability.It is implemented under nonlinear conditions.The simulation results show that the algorithm can complete the tracking of multiple targets under the premise that the new target information and the target motion model are unknown.
作者 周云 张春林 王宝宝 曹明基 ZHOU Yun;ZHANG Chunlin;WANG Baobao;CAO Mingji(The First Military Representative Office of the Army Representative in Shijiazhuang Bureau of the Army Stationed in Beijing,Shijiazhuang 050081,China;Shijiazhuang Military Representative Office of the Military Representative Bureau of the Equipment Department of Aerospace Systems Center,Shijiazhuang 050081,China;The 54th Research Institute of CETC,Shijiazhuang 050081,China)
出处 《计算机与网络》 2023年第13期68-73,共6页 Computer & Network
关键词 随机有限集 多目标跟踪 多模型滤波 序列霍夫变换 random finite set multiple target tracking multiple model filtering sequential Hough transform
  • 相关文献

参考文献2

二级参考文献18

  • 1潘泉,叶西宁,张洪才.广义概率数据关联算法[J].电子学报,2005,33(3):467-472. 被引量:29
  • 2Mahler R P S. Multitarget Bayes filtering via first-order multitarget moments[J]. IEEE Trans on Aerospace and Electronic System, 2003, 39(4): 1152-1178.
  • 3Wang Y D, Wu J K, Kassim A A, et al. Data driven probability hypothesis density filter for visual tracking[J]. IEEE Trans on Circuits and Systems for Video Technology, 2008, 18(8): 1085-1090.
  • 4Panta K, Clark D E, Vo B N. Data association and trackmanagement for the Gaussian mixture probability hypothesis density filter[J]. IEEE Trans on Aerospace and Electronic Systems, 2009, 45(3): 1003-1016.
  • 5Pasha S A, Vo B N, Tuan H D, et al. A Gaussian mixture PHD filter for jump Markov system models[J]. IEEE Trans on Aerospace and Electronic System, 2009, 45(3): 919- 936.
  • 6Punithakumar K, Kirubarajan T, Sinha A. Multiple- model probability hypothesis density filter for tracking maneuvering targets[J]. IEEE Trans on Aerospace and Electronic System, 2008, 44(1): 87-98.
  • 7Vo B N, Singh A, Doucet A. Sequential Monte Carlo methods for multi-target filtering with random finite sets[J]. IEEE Trans on Aerospace and Electronic System, 2005, 41(4): 1224-1245.
  • 8Vo B N, Ma W K. The Gaussian mixture probability hypothesis density filter[J]. IEEE Trans on Signal Processing, 2006, 54(11): 4091-4104.
  • 9Li Rong X, Vesselin P Jilkov. Survey of maneuvering target tracking, Part V: Multiple-model methods[J]. IEEE Trans on Aerospace and Electronic System, 2005, 41(4): 1255- 1321.
  • 10韩崇昭,李晨,朱洪艳.红外搜索跟踪系统的数据关联算法研究[J].控制与决策,2008,23(2):171-176. 被引量:8

共引文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部