期刊文献+

沸石的疏水改性及其对有机物的吸附性能 被引量:1

Hydrophobic modification of zeolite and its adsorption properties for organic compounds
下载PDF
导出
摘要 以天然沸石为原料,通过NaOH溶液碱处理进行致孔、十六烷基三甲氧基硅烷作为偶联剂进行疏水改性制备了疏水性多孔沸石。通过红外光谱、X射线衍射和扫描电镜等对疏水性多孔沸石的物理化学结构进行了表征,研究了十六烷基三甲氧基硅烷的浓度、反应时间和反应温度对疏水性多孔性沸石水接触角的影响,并研究了其对大豆油、煤油、甲苯、柴油等有机物的吸附性能。研究结果表明,在十六烷基三甲氧基硅烷质量分数6%、改性温度80℃、改性时间10h的条件下,疏水性多孔沸石的水接触角最大为156°。疏水性多孔沸石对多种有机物具有很好的吸附容量,其中对煤油的吸附能力最大为1.25g/g,较天然沸石的吸附能力提高了325%,并且在循环使用6次后吸附容量仍在1.14g/g以上,具有良好的使用稳定性和循环利用性能。 Hydrophobic porous zeolite(HPZ)was prepared by alkali treatment and hexadecyltrimethoxysilane(HDTMS)hydrophobic modification with natural zeolite as raw material.The physical and chemical structures of the hydrophobic zeolite were characterized by FT-IR,XRD and SEM techniques.The effects of HDTMS concentration,reaction time and temperature on the contact angel of the HPZ were examined.The adsorption properties of HPZ to soybean oil,kerosene,toluene and diesel oil were also studied.The results indicated that the optimal conditions for preparing HPZ were as follow:HDTMS concentration of 6%,the reaction temperature of 80℃and the modification time of 10 h,which generated the HPZ with a contact angel up to 156°.The adsorption capacity of HMZ for kerosene reached 1.25 g/g,which was 325%higher than that of natural zeolite.The adsorption capacity of HPZ was still up to 1.14 g/g after six times recycle,which confirmed the excellent recycle utilization performance of HMZ.
作者 赵丽娜 汪源浩 ZHAO Lina;WANG Yuanhao(School of Light Industry and Chemical Engineering,Dalian Polytechnic University,Dalian 116034,China)
出处 《大连工业大学学报》 CAS 北大核心 2023年第4期268-272,共5页 Journal of Dalian Polytechnic University
基金 大连市青年科技之星项目(2017RQ130).
关键词 沸石 硅烷 疏水改性 接触角 吸附性能 zeolite silane hydrophobic modification contact angel adsorption
  • 相关文献

参考文献7

二级参考文献58

  • 1何品晶,瞿贤,杨琦,邵立明.土壤因素对填埋场终场覆盖层甲烷氧化的影响[J].同济大学学报(自然科学版),2007,35(6):755-759. 被引量:20
  • 2郭锐,杨骥,彭娟,贾金平,王亚林.表面憎水性活性炭的制造和表征[J].环境科学与技术,2007,30(11):1-3. 被引量:6
  • 3Tao Yousheng, Kanoh H, Abrams L, et al. Mesopore-Modified Zeolites: Preparation, Characterization, and Applications [J].ChemRev, 2006, 106(3): 896 -910.
  • 4Vermeiren W, Gilson J P. Impact of Zeolites on the Petroleum and Petrochemical Industry [ J]. Top Catal, 2009, 52 (9) : 1131 - 1161.
  • 5Larsen S C. Nanocrystalline Zeolites and Zeolite Structures: Synthesis, Characterization, and Applications [J]. J Phys Chem C, 2007, 111 (50) : 18464- 18474.
  • 6Melde B J, Johnson B J. Mesoporous Materials in Sensing:Morphology and Functionality at the Meso-Interface [ J]. Anal BioanalChem, 2010, 398(4) : 1565- 1573.
  • 7Goto Y, Fukushima Y, Ratu P, et al. Mesoporous Material fromZeolite[J].JPorousMater, 2002, 9(1): 43-48.
  • 8Groen J C, Abell6 S, LuisA, etal. Mesoporous Beta Zeolite Obtained by Desilication [ J ]. Microporous Mesoporous Mater, 2008, 114(1/3) : 93 - 102.
  • 9Verboekend D, Chabaneix A M, Thomas K, et al. Mesopo- rous ZSM-22 Zeolite Obtained by Desilication: Peculiarities Associated with Crystal Morphology and Aluminium Distribu- tion[J].CrystEngComm, 2011, 13(10): 3408-3416.
  • 10Bemasconi S, van Bokhoven J A, Krumeich F, et al. Formation of Mesopores in Zeolites Beta by Steaming: A Secondary Pore Channel System in the (001) Plane [J]. Microporous Mesoporous Mater, 2003, 66(1): 21-26.

共引文献38

同被引文献10

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部