期刊文献+

基于卷积神经网络的前向车辆检测方法研究

Forward Vehicle Detection Based on Convolution Neural Network
下载PDF
导出
摘要 提出了一种基于卷积神经网络(CNN)的前向车辆检测方法。首先,采用车底阴影和车宽约束条件进行假设生成,针对存在较多具有边缘、对称性等特征物体干扰时产生灾难性计算量的问题,提出了阴影特征结合车宽约束条件判定方法生成车辆假设,排除大量非车底阴影区域,提高了检测效率;然后采用CNN对产生的车辆假设进行验证,建立车辆样本库,训练并对比分析了多种结构CNN,验证本文设计结构能够快速准确地验证车辆假设,对GTI数据库的检测正确率达到98.65%;最后经强弱光照、树荫等多场景实验验证表明,本文方法能够快速准确地检测出前方车辆。 A forward vehicle detection method based on vehicle width constraint and convolutional neural network(CNN)was proposed.Firstly,we used car shadow and vehicle width constraint to generate hypotheses Aiming at problems that there will be catastrophic calculations when existing too much interference with Edge,symmetry,texture and so on,the vehicle shadow and width constraint decision method was proposed which eliminated a large number of non-vehicle shadow regions and raised the efficiency of detection;Then,we verified the generated vehicle hypotheses by CNN.Through comparisons of different structures of CNN,the proposed CNN structure was proved to be the best,whose accuracy was 98.65%towards GTI database;Lastly,results of experiments under different conditions showed that,the proposed method was effective in detecting forward vehicles accurately.
作者 王威 张庆 Wang Wei;Zhang Qing(School of Vehicle,Sanmenxia Polytechnic,Henan Sanmenxia 472000;School of Applied Engineering,Henan University of Science and Technology,Henan Sanmenxia 472000)
出处 《内燃机与配件》 2023年第15期85-87,共3页 Internal Combustion Engine & Parts
关键词 前车检测 阴影特征 车宽约束 卷积神经网络 Forward vehicle detection Shadow Vehicle width constrain CNN
  • 相关文献

参考文献3

二级参考文献25

  • 1武林,彭复员,赵坤.基于图像特征点匹配的车辆运动检测[J].仪器仪表学报,2005,26(z1):581-582. 被引量:6
  • 2郭磊,李克强,王建强,连小珉.一种基于特征的车辆检测方法[J].汽车工程,2006,28(11):1031-1035. 被引量:22
  • 3李云翀,何克忠,贾培发.基于阴影特征和Adaboost的前向车辆检测系统[J].清华大学学报(自然科学版),2007,47(10):1713-1716. 被引量:19
  • 4Zehang Sun, George Bebis, Ronald Miller. On-Road Vehicle Detection: A Review[ J ]. IEEE Transaction on Pattern Analysis and Machine Intelli- gence, 2006,28(5 ): 694-711.
  • 5V.Kastrinaki, M.Zervakis, K.Kalaitzakis. A survey of video processing techniques for traffic applications [J]. hnage and Vision Computing, 2003(21 ) :359-381.
  • 6J.Y.Huang, H.Z.Hu, X.J.Liu, L..I.Liu. Research on recognition of motional vehicle based on second-difference algorithm [C]. IEEE International Sympos!um on Industrial Electronics, 2009: 292-296.
  • 7公安部交通管理局.中国道路交通事故统计报告[Z].2011.
  • 8SUN Z, BEBIS G, MILLER R. Monocular precrash ve- hicle detection: features and classifiers [ J ]. IEEE Transactions on Image Processing, 2006, 15 (7) : 2019- 2034.
  • 9CHOU E, TSENG D. Weather-adapted vehicle detec- tion for forward collision warning system [ C ]. Proceed- ings of the World Congress on Engineering, London, UK, 2011.
  • 10LI X, GUO X. Vision-based method for forward vehicle detection and tracking[ CI. 2013 International Confer- ence on Mechanical and Automation Engineering (MAEE), IEEE, 2013 : 128-131.

共引文献65

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部