摘要
当前视觉即时定位与地图重构技术(SLAM)的过程中,通常采用随机采样一致性(RANSAC)的图像特征匹配算法,随机估计图像模型容易造成算法时间复杂度不确定,进而导致图像匹配时耗过大,难以满足视觉SLAM实时性的要求。为了改善这一问题,使用渐进采样一致性(PROSAC)的算法对图像特征进行筛选,剔除误匹配特征点,有效改善了图像特征匹配的效率与鲁棒性,进一步增强了视觉SLAM的稳定性与实时性。试验验证表明,相比于当前视觉SLAM特征匹配算法,计算效率明显提升。
In the process of visual Simultaneous Localization and Mapping(SLAM),the image feature matching algorithm of Random Sampling Consensus(RANSAC)is usually used to estimate the image model randomly,which is easy to cause the uncertainty of algorithm time complexity,and then lead to excessive image matching time consumption.It is difficult to meet the real-time requirements of visual SLAM.In order to improve the problem,the algorithm of Progressive Sampling Consensus(PROSAC)is used to screen image features and reject mismatched feature points,which effectively improves the efficiency and robustness of image feature matching,and further enhances the stability and real-time performance of visual SLAM.Experimental verification shows that compared with the current visual SLAM feature matching algorithm,the computational efficiency is significantly improved.
作者
韩佳乐
徐允鹤
郭凤娟
王晓旺
HAN Jiale;XU Yunhe;GUO Fengjuan;WANG Xiaowang
出处
《现代导航》
2023年第4期248-255,共8页
Modern Navigation
关键词
随机采样一致性
视觉即时定位与地图重构技术
图像特征匹配
快速提取描述子
Random Sampling Consensus
Visual Simultaneous Localization and Mapping
Image Feature Matching
Oriented FAST and Rotated BRIEF Feature