期刊文献+

基于改进YOLOv5的牛个体图像识别方法 被引量:2

An Improved YOLOv5-based Method for Image Recognition of Cattle Individual
下载PDF
导出
摘要 针对现有非接触式牛个体图像识别模型体积大、参数多、资源占用较大等问题,提出了一种基于改进YOLOv5模型的轻量级牛个体图像识别模型(Light YOLO Net,LY-Net)。将YOLOv5模型的主干网络替换为轻量级网络Ghost Net,并采用CARAFE(轻量级通用上采样算子),减少网络参数,实现网络轻量化;采用Focal-EIoU Loss作为损失函数,加速收敛并提高了速度。采用甘肃省张掖市某养殖场的30头牛,共6775幅牛个体图像作为样本数据,进行模型的训练、验证、测试。实验结果表明:LY-Net模型对牛个体的识别精确率约为99.6%,召回率约为99.5%。该模型能够在对牛个体图像高效且准确识别的同时,实现模型的小型化、轻量化。 Aiming at the current research problems of the existing non-contact cattle individual image recognition models,such as large volume,multiple parameters and large resource occupation,this paper proposes a lightweight cattle individual image recognition model(Light YOLO Net,LY-Net)based on improved YOLOv5 model.The backbone network of the YOLOv5 model is replaced by the lightweight network Ghost Net,and CARAFE(a lightweight universal up-sampling operator)is used to reduce network parameters and realize network lightweight.Focal-EIoU Loss is used as the loss function to accelerate the convergence and improve the speed.A total of 6775 individual cattle images of 30 cattle individuals on a farm in Zhangye City,Gansu Province are used as sample data for training,validation,and testing of the model.The experimental results show that the precision rate of LY-Net model for cattle individual recognition is about 99.6%,and the recall rate is about 99.5%.The proposed model can realize the miniaturization and lightweight of the model while effectively and accurately recognizing individual cattle images.
作者 刘琪伟 郭小燕 李纯斌 杨道涵 LIU Qiwei;GUO Xiaoyan;LI Chunbin;YANG Daohan(School of Information Science and Technology,Gansu Agricultural University,Lanzhou 730070,China;College of Resources and Environment,Gansu Agricultural University,Lanzhou 730070,China)
出处 《软件工程》 2023年第9期42-47,58,共7页 Software Engineering
基金 甘肃农业大学盛彤笙创新基金项目(GSAU-STS-2021-16) 甘肃农业大学青年导师基金项目(GAU-QDFC-2021-18) 甘肃省自然科学基金项目(20JR5RA023)。
关键词 YOLOv5 牛个体 图像识别 轻量级 YOLOv5 cattle individual image recognition lightweight
  • 相关文献

参考文献9

二级参考文献71

共引文献187

同被引文献32

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部