期刊文献+

基于同态加密的人脸识别隐私保护方法 被引量:2

Face Recognition Privacy Protection Method Based on Homomorphic Encryption
下载PDF
导出
摘要 随着大数据的发展与应用,生物特征识别技术得到了快速发展,并在新型认证技术中开始得到广泛应用.由于传统的基于生物特征的身份认证多是在明文状态下进行,对用户的隐私无法给与充分保障,因此基于以上缺陷提出并设计了一种基于同态加密技术的人脸识别隐私保护方法.该方法首先利用当前热门身份认证模型FaceNet对用户生物特征信息进行提取,然后借助基于RLWE的同态加密技术对提取的特征信息进行加密,保证生物特征信息在外包给服务器进行距离计算时不会泄露用户的隐私数据,防止服务器窥探用户的行为.同时,在身份认证过程中引入随机数概念,防止非法用户对服务器的重放攻击.实验证明,该方法在密文状态下仍能保证较高的准确率与可行性. With the development and application of big data,biometric recognition technology has developed rapidly and has been widely used in new authentication technology.Because the traditional biometric-based identity authentication is mostly carried out in plaintext,and the user’s privacy cannot be adequately guaranteed,this paper proposes and designs a face recognition privacy protection method based on homomorphic encryption technology based on the above defects.This method firstly uses the current popular authentication model FaceNet to extract the user’s biometric information,and then encrypts the extracted feature information with the help of RLWE based homomorphic encryption technology to ensure that when the biometric information is outsourced to the server for distance calculation,the user’s private data will not be disclosed and the server will not snoop on the user’s behavior.At the same time,in the process of identity authentication,the concept of random number is introduced to prevent illegal users from replaying attacks on the server.Experiments show that the method can still ensure high accuracy and feasibility in the state of ciphertext.
作者 李雅硕 龙春 魏金侠 李婧 杨帆 李婧 Li Yashuo;Long Chun;Wei Jinxia;Li Jing;Yang Fan;and Li Jing(University of Chinese Academy of Sciences,Beijing 100049;Computer Network Information Center,Chinese Academy of Sciences,Beijing 100083;School of Computer Science and Network Engineering,Guangzhou University,Guangzhou 510006)
出处 《信息安全研究》 CSCD 2023年第9期843-850,共8页 Journal of Information Security Research
基金 国家自然科学基金项目(62072127,62002076)。
关键词 生物特征认证 人脸识别 同态加密 隐私保护 大数据安全 biometric verification face identification homomorphic encryption privacy protection big data security
  • 相关文献

参考文献7

二级参考文献51

  • 1孔维广.基于BCL的行为认证方案[J].武汉科技学院学报,2005,18(4):52-54. 被引量:1
  • 2罗斌,裘正定.网络身份认证新技术[J].计算机安全,2005(10):29-31. 被引量:14
  • 3牟琦,龚尚福.基于用户行为模型的身份验证算法研究[J].西安科技大学学报,2006,26(3):376-378. 被引量:8
  • 4薛辉,王再芊,梁晶,王平,安凯.网络身份认证若干安全问题及其解决方案[J].计算机与数字工程,2007,35(1):81-83. 被引量:6
  • 5张权.量子信道编码与量子密码理论研究[M].长沙:国防科技大学,2001:33-36.
  • 6易韬.思维认证:身份识别新趋势.中国计算机报,2007,(07):72-73.
  • 7Y. Xu, C. Lin, W. Zhao. Producing computationally efficient KPCA- based feature extraction for classification problems[J]. Electronics Letters (SCI), 2010,46(6), 452-453.
  • 8Zarzoso V,Comon P, Robust independent component analysis by iterative maximization of the kurtosis contrast with algebraic optimal step size[J]. IEEE Transactions on Neural Networks . 2010, (21) : 248-261.
  • 9O. Lahdenoja, M. Laiho, A. Paasio, "Reducing the feature vector length in local binary pattern based face recognition" Proc[C]. IEEE International Conference on Image Processing (2005),Genoa, Italy, vol. 2, pp. 914-917.
  • 10Lipton A .,Fujiyoshi H.,Patil R. Moving Target Classification and Tracking from Real Time video[C].In Proceedings of the Workshop on Application of computer Vision,October,1998,47-58.

共引文献203

同被引文献5

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部