期刊文献+

Research on system combination of machine translation based on Transformer

下载PDF
导出
摘要 Influenced by its training corpus,the performance of different machine translation systems varies greatly.Aiming at achieving higher quality translations,system combination methods combine the translation results of multiple systems through statistical combination or neural network combination.This paper proposes a new multi-system translation combination method based on the Transformer architecture,which uses a multi-encoder to encode source sentences and the translation results of each system in order to realize encoder combination and decoder combination.The experimental verification on the Chinese-English translation task shows that this method has 1.2-2.35 more bilingual evaluation understudy(BLEU)points compared with the best single system results,0.71-3.12 more BLEU points compared with the statistical combination method,and 0.14-0.62 more BLEU points compared with the state-of-the-art neural network combination method.The experimental results demonstrate the effectiveness of the proposed system combination method based on Transformer.
作者 刘文斌 HE Yanqing LAN Tian WU Zhenfeng LIU Wenbin(Research Center for Information Science Theory and Methodology,Institute of Scientific and Technical Information of China,Beijing 100038,P.R.China)
出处 《High Technology Letters》 EI CAS 2023年第3期310-317,共8页 高技术通讯(英文版)
基金 Supported by the National Key Research and Development Program of China(No.2019YFA0707201) the Fund of the Institute of Scientific and Technical Information of China(No.ZD2021-17).
  • 相关文献

参考文献5

二级参考文献32

  • 1R. Frederking, S. Nirenburg. Three heads are better than one[C]//Proeeedings of the fourth Conference on Applied Natural Language Processing. 1994: 95-100.
  • 2J. G. Fiscus. A post-processing system to yield reduced word error rates: Recognizer output voting error reduction (ROVER)[C]//IEEE Workshop on Automatic Speech Recognition and Understanding. 1997: 347-354.
  • 3S. Bangalore, F. Bordel, G. Riccardi. Computing consensus translation from multiple machine translation systems[C]//IEEE Workshop on Automatic Speech Recognition and Understanding. ASRU'01, 2001:351-354.
  • 4S. Kumar, W. Byrne. Minimum bayes-risk decoding for statistical machine translation [C]//Proc. HLTNAACL. Boston, MA, USA, 2004:196-176.
  • 5A.-V. I. Rosti, N. F. Ayan, B. Xiang, et al. Combining outputs from multiple machine translation sys- tems[C]//Proceedings of NAACL HLT. Rochester, NY, 2007: 228-235.
  • 6K. Papineni, S. Roukos, T. Ward, et al. BLEU: a method for automatic evaluation of machine translation[C]//Proceedings of the 40th Annual Meeting of the Association for Computational Linguistics ( ACL 2002). Philadelphia, PA, 2002:311-318.
  • 7M. Snover, B. Dorr, R. Schwartz, et al. A study of translation edit rate with targeted human annotation [C]//Proceedings of the 7th Conference of the Association for Machine Translation in the Americas. Cambridge, 2006: 223-231.
  • 8F. J. Och, H. Ney. A systematic comparison of various statistical alignment models[J]. Computational Linguistics. 2003, 29(1):19-51.
  • 9P. Koehn, H. Hoang, A. Birch, et al. Moses; Open Source Toolkit for Statistical Machine Translation[C]//Proceedings of the ACL 2007 Demo and Poster Sessions. Prague, 2007: 177-180.
  • 10F. Huang, K. Papineni. Hierarchical system combination for machine translation[C]//Proeeedings of the 2007 Joint Conference on Empirical Methods in Natural Language Processing and Computational Natural Language Learning. Prague, 2007: 277-286.

共引文献40

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部