期刊文献+

基于在线评论的顾客满意度研究——以健康监测穿戴产品为例 被引量:7

Customer Satisfaction Modelling for Healthcare Wearable Devices Through Online Reviews
原文传递
导出
摘要 【目的】识别顾客群体对健康监测穿戴产品的关注维度及其对满意度的影响,启发商家优化产品并提升服务。【方法】采用知名购物网站亚马逊的11349条在线评论数据作为语料,使用LDA模型识别顾客满意维度,结合机器学习算法建构满意度模型。【结果】以多层感知器(MLP)建构的满意度模型预测效果最佳(F1=0.6534),顾客对产品的关注集中于功能属性、服务属性、质量属性、价值属性、易用属性、社交属性、效用属性等7个综合属性的13个产品维度。功能属性是顾客群体最关注的产品属性,而社交属性、质量属性和服务属性能给顾客满意度带来消极影响,应是商家进行产品优化与服务提升的优先方向。【局限】未考虑评论真实性。【结论】得到顾客对产品的关注维度、满意度影响方面与改进次序,为商家提供深刻管理启示。 [Objective]This paper identifies the dimensions of customer interest in wearable healthcare devices and their impact on satisfaction,aiming to inspire businesses to optimize their products and services.[Methods]First,we retrieved 11,349 online reviews from Amazon.com as the corpus.Then,we used the LDA model to identify customer satisfaction dimensions.Finally,we constructed a satisfaction model using machine learning algorithms.[Results]The satisfaction model constructed with the Multi-Layer Perceptron(MLP)had the best prediction effect(F1=0.6534).Customers’attention on products focused on 13 dimensions across seven comprehensive attributes:functionality attributes,service attributes,quality attributes,value attributes,ease of use attributes,social attributes,usefulness attributes.Functionality attributes was the most important product feature for customers.Social,quality,and service attributes had a negative impact on customer satisfaction and should be the priority for businesses to improve products and services.[Limitations]We did not consider the reviews’authenticity and in future will include cases of false and malicious reviews in the analysis process.[Conclusions]This paper identifies the dimensions of customer attention to products,their impact on satisfaction,and the order in which improvement should be made,providing management insights for business.
作者 林伟振 刘洪伟 陈燕君 温展明 易闽琦 Lin Weizhen;Liu Hongwei;Chen Yanjun;Wen Zhanming;Yi Minqi(School of Management,Guangdong University of Technology,Guangzhou 510520,China)
出处 《数据分析与知识发现》 CSCD 北大核心 2023年第5期145-154,共10页 Data Analysis and Knowledge Discovery
基金 国家自然科学基金项目(项目编号:71671048) 全国教育科学规划教育部青年课题(项目编号:EIA210424) 广东省哲学社会科学“十四五”规划2022年度常规项目(项目编号:GD22YJY13)的研究成果之一。
关键词 健康监测穿戴产品 顾客满意度 在线评论 主题模型 机器学习 Healthcare Wearable Devices Customer Satisfaction Online Reviews Topic Models Machine Learning
  • 相关文献

参考文献4

二级参考文献25

共引文献46

同被引文献89

引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部