期刊文献+

Regularized Kernel Forms of Minimum Squared Error Method

原文传递
导出
摘要 Minimum squared error(MSE)algorithm is one of the classical pattern recognition and regression analysis methods,whose objective is to minimize the squared error summation between the output of linear function and the desired output.In this paper,the MSE algorithm is modified by using kernel functions satisfying the Mercer condition and regularization technique;and the nonlinear MSE algorithms based on kernels and regularization term,that is,the regularized kernel forms of MSE algorithm,are proposed.Their objective functions include the squared error summation between the output of nonlinear function based on kernels and the desired output and a proper regularization term.The regularization technique can handle ill-posed problems,reduce the solution space,and control the generalization.Three squared regularization terms are utilized in this paper.In accordance with the probabilistic interpretation of regularization terms,the difference among three regularization terms is given in detail.The synthetic and real data are used to analyze the algorithm performance.
出处 《Frontiers of Electrical and Electronic Engineering in China》 CSCD 2006年第1期1-7,共7页 中国电气与电子工程前沿(英文版)
基金 supported by the National Natural Science Foundation of China (No.60275007 and No.698885004).
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部