摘要
为实现对水质的精准预测,提前采取相应的预防措施。在结合水库实际情况重点对其污染源进行分析的基础上,提出以WASP水质预测模型为基础,为实现水质的精准预测将BP神经网络算法融入其中;根据水库基本情况完成WASP水质预测模型中基本参数的设置,并对水中五日生化需氧量指标进行模拟验证,最后得到理想模拟验证结果。
In order to achieve accurate prediction of water quality,corresponding preventive measures should be taken in advance.Based on the actual situation of the reservoir and the analysis of its pollution sources,a water quality prediction model based on WASP is proposed to integrate the BP neural network algorithm into the accurate prediction of water quality.Complete the setting of basic parameters in the WASP water quality prediction model based on the basic situation of the reservoir,and simulate and verify the five day biochemical oxygen demand indicators in the water,finally obtaining the ideal simulation and verification results.
作者
曹媛
Cao Yuan(Shanxi Yuncheng Ecological Environment Monitoring Center,Yuncheng Shanxi 044000,China)
出处
《山西化工》
CAS
2023年第8期222-223,235,共3页
Shanxi Chemical Industry
关键词
水质预测
WASP水质预测模型
水中五日生化需氧量
BP神经网络
相对误差
water quality prediction
WASP water quality prediction model
five day biochemical oxygen demand in water
BP neural network
relative error