期刊文献+

多核并行粒子滤波算法设计与实现

Design and Implementation of Multi-core Parallel Particle Filter Algorithm
下载PDF
导出
摘要 粒子滤波算法由于需要采样大量粒子才能较好地逼近后验概率,故使得系统实时性较差。以一个简单的离散系统为例实现多种粒子滤波并行算法。实验结果表明,并行算法可以有效提高计算效率,基于OpenMP和MPI的并行算法加速效果较好,在一定情况下可以达到超线性加速,此外,当粒子数达到一定数量时,MPI结合OpenMP的并行方法加速效果更佳。 The particle filter algorithm requires sampling a large number of particles to better approximate the posterior probability,so the real-time performance of the system is poor.This paper uses a simple discrete system as an example to implement a variety of parallel particle filter algorithms.Experimental results show that the parallel algorithm can effectively improve the computational efficiency,the parallel algorithm based on OpenMP and MPI has a good acceleration effect,and can achieve superlinear acceleration under certain circumstances,in addition,when the number of particles reaches a certain number,the parallel method of MPI combined with OpenMP accelerates better.
作者 卞泽韬 陈华 BIAN Ze-tao;CHEN Hua(China University of Petroleum(East China),Qingdao,266580,Shandong)
出处 《电脑与电信》 2023年第5期63-69,共7页 Computer & Telecommunication
基金 基于数据驱动的磁流变液制动器数字孪生仿真平台(校级大学生创新创业项目),项目编号:202115018。
关键词 并行计算 粒子滤波 OPENMP MPI Windows API PPL parallel computing particle filter OpenMP MPI Windows API PPL
  • 相关文献

参考文献3

二级参考文献27

  • 1陈鹏,钱徽,朱淼良.一种快速高斯粒子滤波算法[J].华中科技大学学报(自然科学版),2008,36(S1):291-294. 被引量:9
  • 2李静,陈兆乾,陈世福.EM-GMPF:一种基于EM的混合高斯粒子滤波器算法[J].计算机研究与发展,2005,42(7):1210-1216. 被引量:5
  • 3石华伟,夏利民.基于Mean Shift算法和粒子滤波器的人眼跟踪[J].计算机工程与应用,2006,42(19):26-28. 被引量:11
  • 4刘志明,韦巍.基于均值变换的Particle Filter实时跟踪算法[J].模式识别与人工智能,2006,19(6):825-830. 被引量:3
  • 5Okuma K, Taleghani A, de Freitas N. A boosted particle filter: multitarget detection and tracking [C] // Proceedings of European Conf on Computer Vision 2004. Prague: Springer-Verlag, 2004: 28-39.
  • 6Cai Yizheng, de Freitas O, Little J J. Robust visual tracking for multiple targets[C]//Proceedings of European Conference on Computer Vision 2006. Graz: Springer-Verlag, 2006: 107-118.
  • 7Khan Z, Baleh T, Dellaert F. MCMC-based particle filtering for tracking a variable number of interacting targets[J]. IEEE Transactions on Pattern Analysisand Machine Intelligence(PAMI), 2005, 27: 1805- 1809.
  • 8Blelloch G E. Prefix sums and their applications [M]. Synthesis of Parallel Algorithms. Pittsburgh: Morgan Kaufmann, 1993.
  • 9Doucet A, Johansen A M. A tutorial on particle filtering and smoothing: fifteen years later[M]. British Columbia: University Press, 2009: 174-178.
  • 10Arulampalam M S, Maskell S. A tutorial on particle filters for online nonliner/non-Gaussian Bayesian tracking[J].IEEE Transactions on Signal Processing, 2002, 50(2): 174-188.

共引文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部