期刊文献+

多特征聚合的红外-可见光行人重识别 被引量:1

Infrared-visible person re-identification based on multi feature aggregation
下载PDF
导出
摘要 红外-可见光行人重识别在视频监控、智能交通、安防等领域具有广泛应用。但是不同图像模态间的差异,给该领域带来了巨大的挑战。现有方法主要集中于缓解模态间差异以获得更具鉴别性的特征,但却忽略了邻级特征之间的关系以及多尺度信息对全局特征的影响。因此,本文提出一种基于多特征聚合的红外-可见光行人重识别方法(MFANet)解决现有方法的缺陷。首先在特征提取阶段融合邻级特征,引导低级特征信息的融入,以强化高级特征,使得特征更具健壮性;然后聚合不同感受野的多尺度特征以获得丰富的上下文信息;最后,以多尺度特征作为引导,强化特征以获得更具鉴别性的特征。在SYSU-MM01和RegDB数据集上的实验结果证明了所提方法的有效性,其中SYSU-MM01数据集在最困难的全搜索单镜头模式下平均精度达到了71.77%。 Infrared-visible person re-identification has been widely used in video surveillance,intelligent transportation,security,and other fields.However,due to the differences between different image modalities,it brings great challenges to this field.The existing methods mainly focus on mitigating the differences between modes to obtain more discriminating features,but ignore the relationship between adjacent features and the influence of multi-scale information on global features.Here,a infrared-visible person re-identification method(MFANet)based on multi-feature aggregation is proposed to solve the shortcomings of existing methods.Firstly,the adjacent level features are fused in the feature extraction stage,and the integration of low-level feature information is guided to strengthen the high-level features and make the features more robust.Then,the multi-scale features of different receptive fields of view are aggregated to obtain rich contextual information. Finally, multi-scale features are used as a guide to strengthen the features to obtain more discriminating features. Experimental results on SYSU-MM01 and RegDB datasets show the effectiveness of the proposed method, and the average accuracy of SYSU-MM01 dataset reaches 71.77% in the most difficult all-search single-shot mode.
作者 郑海君 葛斌 夏晨星 邬成 Zheng Haijun;Ge Bin;Xia Chenxing;Wu Cheng(College of Computer Science and Engineering,Anhui University of Science and Technology,Huainan,Anhui 232001,China;Institute of Energy,Hefei Comprehensive National Science Center,Hefei,Anhui 230031,China)
出处 《光电工程》 CAS CSCD 北大核心 2023年第7期100-112,共13页 Opto-Electronic Engineering
基金 国家自然科学基金(6210071479,62102003) 国家重大专项(2020YFB1314103) 安徽省自然科学基金(2108085QF258) 安徽省博士后基金(2022B623)。
关键词 行人重识别 红外 多尺度 邻级特征 person re-identification infrared multi-scale adjacent level features
  • 相关文献

参考文献3

二级参考文献9

共引文献16

同被引文献3

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部