期刊文献+

基于STIRPAT模型的京津冀“碳达峰”预测研究 被引量:4

Prediction of carbon peak in Beijing-Tianjin-Hebei Region based on STIRPAT model
下载PDF
导出
摘要 为了解决京津冀地区碳排放量达峰问题,以河北省为例,研究京津冀碳排放达峰实现路径,对京津冀未来的碳排放量进行预测分析,建立以河北省2004-2021年碳排放相关数据为基础的STIRPAT碳排放预测拓展模型。设置了6个情景,通过综合考虑人口规模、人均GDP、城镇化率、产业结构、能源强度、能源结构数据的变化速度,模拟不同情景下京津冀2022-2040年的碳排放趋势,进而预测京津冀三地的“碳达峰”时间与碳排放峰值。结果表明:北京除清洁发展情景是在2030年达峰,其余情景均在2035年达到峰值;天津除经济放缓情景是在2030年达峰,其余情景均在2035年实现“碳达峰”;河北除基准情景在2035年达峰外,其余情景均是在2030年达到峰值。所提的碳排放预测拓展模型在考虑多情景分析下,就京津冀地区如何控制和减少碳排放量提出相关建议,可为京津冀低碳经济的发展提供一定的参考依据。 In order to solve the problem of early peak of carbon emissions the Beijing-Tianjin-Hebei Region,taking Hebei Province as an example,the realization path of peaking carbon emissions in the region was studied,and the future carbon emissions in the region were predicted and analyzed,the STIRPAT carbon emission prediction expansion model based on carbon emission data in Hebei Province from 2004 to 2021 was established.Six scenarios were set up to simulate the carbon emission trend from 2022 to 2040 under different scenarios by comprehensively considering the change rates of six data such as population size,per capita GDP,urbanization rate,industrial structure,energy intensity and energy structure,and to predict the carbon peak time and carbon emission peak of Beijing,Tianjin and Hebei.The results show that:Except for the clean development scenario,which peaks in 2030,the other scenarios of Beijing will reach the peak in 2035.Except for the economic slowdown scenario,which is to peak in 2030,the remaining scenarios of Tianjin were to achieve carbon peak in 2035.In Hebei Province,except for the baseline scenario,which is to reach the peak in 2035,the remaining scenarios are to reach the peak in 2030.The proposed carbon emission forecast expansion model,considering multi-scenario analysis,puts forward relevant suggestions on how to control and reduce carbon emissions in the Beijing-Tianjin-Hebei Region,and provides certain reference for the development of low-carbon economy in the Beijing-Tianjin-Hebei Region.
作者 康利改 曹紫霖 刘伟 吴小敬 杨炀 袁小雪 王文静 赵薇 KANG Ligai;CAO Zilin;LIU Wei;WU Xiaojing;YANG Yang;YUAN Xiaoxue;WANG Wenjing;ZHAO Wei(School of Civil Engineering,Hebei University of Science and Technology,Shijiazhuang,Hebei 050018,China;Institute of Energy,Hebei Academy of Sciences,Shijiazhuang,Hebei 050081,China)
出处 《河北科技大学学报》 CAS 北大核心 2023年第4期421-430,共10页 Journal of Hebei University of Science and Technology
基金 河北省创新能力提升计划项目(21557697D)。
关键词 统计预测理论 “碳达峰” STIRPAT模型 岭回归 情景模拟 路径选择 statistical prediction theory carbon peak STIRPAT model ridge regression scenario simulation path selection
  • 相关文献

参考文献9

二级参考文献97

  • 1吴巧生,成金华.中国能源消耗强度变动及因素分解:1980—2004[J].经济理论与经济管理,2006,26(10):34-40. 被引量:136
  • 2徐国泉,刘则渊,姜照华.中国碳排放的因素分解模型及实证分析:1995-2004[J].中国人口·资源与环境,2006,16(6):158-161. 被引量:1054
  • 3高振宇,王益.我国生产用能源消费变动的分解分析[J].统计研究,2007,24(3):52-57. 被引量:82
  • 4IPCC. IPCC Fourth Assessment Report [EB/OL]. http://www.ipcc. ch/ipccreports/arg-wg3.htm, 2009-05 - 17.
  • 5Hoekstra R, van der Bergh J C J M. Comparing structural and index decomposition analysis[J]. Energy Economics, 2003,25 (1): 39-64.
  • 6ZHANG Z X. Decoupling China' s carbon emissions increase from economic growth: An economic analysis and policy implications [J]. World Development, 2000,28(4): 739-752.
  • 7Kaya Yoiehi. Impact of Carbon Dioxide Emission on GNP Growth: Interpretation of Proposed Scenarios [R]. Paris: Presentation to the Energy and Industry Subgroup, Response Strategies Working Group,IPCC, 1989.
  • 8Ang B W. Decomposition analysis for policymaking in energy: Which is the preferred Method ? [J]. Energy Policy, 2004,32 (9): 1131-1139.
  • 9Ang B W, Na Liu. Energy decomposition analysis: lEA model versus other methods[J]. Energy Policy, 2007,35 (3): 1426- 1432.
  • 10Richard York, Eugene A. Rosa, Thomas Dietz. STIRPAT, IPAT and IMPACT: Analytic tools for unpacking the driving forces of environmental impacts[J]. Ecological Economics, 2003, 46(3):351-365.

共引文献538

同被引文献48

引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部