期刊文献+

Novel Ag-bridged dual Z-scheme g-C_(3)N_(4)/BiOI/AgI plasmonic heterojunction: Exceptional photocatalytic activity towards tetracycline and the mechanism insight

原文传递
导出
摘要 Rational design and synthesis of highly efficient and robust photocatalysts with positive exciton splitting and interfacial charge transfer for environmental applications is critical.Herein,aiming at overcoming the common shortcomings of traditional photocatalysts such as weak photoresponsivity,rapid combination of photo-generated carriers and unstable structure,a novel Ag-bridged dual Z-scheme g-C_(3)N_(4)/BiOI/AgI plasmonic heterojunction was successfully synthesized using a facile method.Results showed that Ag-AgI nanoparticles and three-dimensional(3D)BiOI microspheres were decorated highly uniformly on the 3D porous g-C_(3)N_(4) nanosheet,resulting in a higher specific surface area and abundant active sites.The optimized 3D porous dual Z-scheme g-C_(3)N_(4)/BiOI/Ag-AgI manifested exceptional photocatalytic degradation efficiency of tetracycline(TC)in water with approximately 91.8%degradation efficiency within 165 min,outperforming majority of the reported g-C_(3)N_(4)-based photocatalysts.Moreover,g-C_(3)N_(4)/BiOI/Ag-AgI exhibited good stability in terms of activity and structure.In-depth radical scavenging and electron paramagnetic resonance(EPR)analyses confirmed the relative contributions of various scavengers.Mechanism analysis indicated that the improved photocatalytic performance and stability were ascribed to the highly ordered 3D porous framework,fast electron transfer of dual Z-scheme heterojunction,desirable photocatalytic performance of BiOI/AgI and synergistic effect of Ag plasmas.Therefore,the 3D porous Z-scheme g-C_(3)N_(4)/BiOI/Ag-AgI heterojunction had a good prospect for applications in water remediation.The current work provides new insight and useful guidance for designing novel structural photocatalysts for environment-related applications.
出处 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2023年第9期123-140,共18页 环境科学学报(英文版)
基金 supported by the National Natural Science Foundation of China(Nos.22106020 and 42122056) the KeyArea Research and Development Program of Guangdong Province(No.2020B1111350002) the Local Innovative and Research Teams Project of Guangdong Pearl River Talents Program(No.2017BT01Z032) the Guangdong Basic and Applied Basic Research Foundation(No.2020A1515110718).
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部