期刊文献+

Tuning the atomic configuration environment of MnN_(4) sites by Co cooperation for efficient oxygen reduction

下载PDF
导出
摘要 Carbon-based N-coordinated Mn(Mn-N_(x)/C)single-atom electrocatalysts are considered as one of the most desirable non-precious oxygen reduction reaction(ORR)candidates due to their insignificant Fenton reactivity,high abundance,and intriguing electrocatalytic performance.However,current MnN_(x)/C single-atom electrocatalysts suffer from high overpotentials because of their low intrinsic activity and unsatisfactory chemical stability.Herein,through an in-situ polymerization-assisted pyrolysis,the Co as a second metal is introduced into the Mn-N_(x)/C system to construct Co,Mn-N_(x)dual-metallic sites,which atomically disperse in N-doped 1D carbon nanorods,denoted as Co,Mn-N/CNR and hereafter.Using electron microscopy and X-ray absorption spectroscopy(XAS)techniques,we verify the uniform dispersion of CoN4and MnN4atomic sites and confirm the effect of Co doping on the MnN_(4) electronic structure.Density functional theory(DFT)calculations further elucidate that the energy barrier of ratedetermining step(^(*)OH desorption)decreases over the 2 N-bridged MnCoN_(6) moieties related to the pure MnN_(4).This work provides an effective strategy to modulate the local coordination environment and electronic structure of MnN_(4) active sites for improving their ORR activity and stability.
出处 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第7期547-559,I0012,共14页 能源化学(英文版)
基金 the financial support from the Research Foundation for Talented Scholars of Hainan University(YEAZ22091) the financial supports from the Joint Funds of the National Natural Science Foundation of China(ZK20180055) the Programs for Foreign Talent(G2021106012L) the National Natural Science Foundation of China(22075290)。
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部