期刊文献+

基于改进灰狼算法优化SVM的机器人坡口类型识别 被引量:3

Robot weld type recognition based on improved grey wolf algorithm optimizing SVM
下载PDF
导出
摘要 基于双目视觉传感器的机器人移动平台建立图像采集系统,研究了一种改进的灰狼算法和最小化参数策略结合,来优化支持向量机,实现对不同焊缝类型进行识别。首先,在灰狼算法中引入佳点集理论生成初始种群,减少灰狼种群种类数,为算法全局搜索的快捷和稳定性奠定基础。然后,在分类器SVM中引入非线性收敛因子,并结合最小化参数的策略,加强最优参数的泛化能力。最后,通过基于最优参数建立的SVM模型进行焊缝类型识别试验。证明了改进算法优化的SVM模型相对于粒子群算法、遗传算法、布谷鸟算法和基本灰狼算法,在识别准确率和优化速度方面都有了较大的提升。 An image acquisition system based on binocular visual sensors for robot mobile platforms was established,and an improved grey wolf algorithm combined with a minimization parameter strategy was studied to optimize support vector machines and achieve recognition of different weld types.Firstly,introducing the theory of the best point set into the Grey Wolf algorithm to generate an initial population,reducing the number of species in the Grey Wolf population and laying the foundation for the fast and stable global search of the algorithm.Then,a nonlinear convergence factor was introduced into the classifier SVM and combined with a strategy of minimizing parameters to enhance the generalization ability of the optimal parameters.Finally,an SVM model based on the optimal parameters was used for weld seam type recognition experiments.It is proved that the improved algorithm optimized SVM model has significantly improved recognition accuracy and optimization speed compared to particle swarm optimization,genetic algorithm,cuckoo bird algorithm,and basic grey wolf algorithm.
作者 吕学勤 龙力源 何香还 谢承志 廉杰 张敏 方健 LüXueqin;Long Liyuan;He Xianghuan;Xie Chengzhi;Lian Jie;Zhang Min;Fang Jian(Shanghai University of Electric Power,Shanghai 200090,China;State Grid Hunan Electric Power Co.,Ltd.,Changde Power Supply Company,Changde 415000,Hunan,China;Linfen Power Supply Company,Linfen 041000,Shanxi,China;Guangzhou Power Supply Bureau of Guangdong Power Grid Co.,Ltd.,Guangzhou 510013,China)
出处 《焊接》 北大核心 2023年第8期14-21,36,共9页 Welding & Joining
基金 国家自然科学基金资助项目(52075316) 上海市地方院校能力建设项目(23010501400)。
关键词 焊缝识别 ZERNIKE矩 改进灰狼算法 支持向量机 weld recognition Zernike moment the improved grey wolf algorithm support vector machine
  • 相关文献

参考文献8

二级参考文献66

共引文献27

同被引文献28

引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部