期刊文献+

基于滑模预测控制的水面无人船轨迹跟踪研究 被引量:1

Trajectory Tracking of Unmanned Surface Vessels Based on Sliding Mode Predictive Control
下载PDF
导出
摘要 针对全驱动无人船(USV)的轨迹跟踪问题,提出了一种模型预测控制和积分滑模控制相结合的双层控制方法。首先,针对无人船系统的运动学模型,设计模型预测控制器(MPC)根据期望轨迹得到满足约束条件的期望速度信号;针对动力学模型,设计积分滑模控制器(ISMC)使得系统在外界干扰存在的情况下,实现对期望信号的跟踪,提高了系统的鲁棒性;设计非线性干扰观测器对外界干扰进行估计,并在控制律的设计过程中进行补偿;最后,采用李雅普诺夫方法证明了系统的稳定性。数值仿真证明了两者的结合可以有效地实现全驱动无人船的轨迹跟踪。 To solve the problem of trajectory tracking of fully-actuated Unmanned Surface Vessels(USV),a dual-layer control method combining Model Predictive Control(MPC)with Integral Sliding Mode Control(ISMC)is proposed.Firstly,as for the kinematics model of the USV system,a model predictive controller is designed to obtain the desired velocity signal satisfying the constraints according to the desired trajectory.As for the dynamics model,an integral sliding mode controller is designed to track the desired signal in the presence of external disturbances,which improves the robustness of the system.A nonlinear disturbance observer is designed to estimate the external disturbance and compensate for the external disturbance during the design of the control law.Finally,the stability of the system is proved by the Lyapunov method.Numerical simulation proves that the combination of the two can effectively achieve the trajectory tracking of the fully-actuated USV.
作者 冯鑫 于双和 FENG Xin;YU Shuanghe(Dalian Maritime University,Dalian 116000,China)
机构地区 大连海事大学
出处 《电光与控制》 CSCD 北大核心 2023年第9期92-98,共7页 Electronics Optics & Control
基金 国家自然科学基金(62073054)。
关键词 全驱动无人船 轨迹跟踪 模型预测控制(MPC) 积分滑模控制(ISMC) 非线性干扰观测器 fully-actuated unmanned surface vessel trajectory tracking Model Predictive Control(MPC) Integral Sliding Mode Control(ISMC) nonlinear disturbance observer
  • 相关文献

参考文献3

二级参考文献24

  • 1MANLEY J E. Autonomous surface vessels, 15 years of development[C]//Proceedings of Oceans 2008 MTS/IEEE Quebec Conference and Exhibition. Quebec City Canada: IEEE Service Center, 2008: 1-4.
  • 2VEERS J, BERTRAM V. Development of the ASV multi-mission surface vehicle III[C]//Proceedings of the 5th International Conference Computer and IT'Application in the Maritime Industries, Leiden. Netherlands: IEEE Service Center, 2006: 345-355.
  • 3MANLEY J E, AARON M, WHITNEY C, COLETTE W. Evolution of the autonomous surface craft AutoCat[C]//Proceedings- of the OCEANS 2000 MTS/IEEE Conference and Exhibition, Providence. USA: IEEE Service Center, 2000: 403-408.
  • 4ANTONIO P. Robotic ocean vehicles for marine science applications: the European ASIMOV project[C]//Proceedings of the OCEANS 2000 MTS/IEEE Conference and Exhibition, Providence, USA: IEEE Service Center, 2000: 409-415.
  • 5CACCIA M, BIBULI M, BONO R, BRUZZONE G. Basic navigation, guidance and control of an unmanned surface vehicle[J]. Autonomous Robots, 2008, 25: 349-365.
  • 6JIANG Zhongping. Global tracking control of underactuated ships by Lyapunov's direct method[J]. Automatica, 2002, 38: 301-309.
  • 7AL-HIDDABI S, MCCLAMROCH N. Tracking and maneuver regulation control for nonlinear nonminimum phase systems: application to flight control[J]. IEEE Transactions Control Systems Technology, 2002, 10(6): 780-792.
  • 8Do K D. Universal controllers for stabilization and tracking of underactuated ships[J]. Systems & Control Letters, 2002, 47: 299-317.
  • 9PETTERSEN K Y, NIJMEIJER H. Tracking control of an underactuated ship[J]. IEEE Transactions Control Systems Technology, 2003, 11(1): 52-61.
  • 10AGUIAR A P, HESPANHA J P. Trajectory-tracking and path-following of underactuated autonomous vehicles with parametric modeling uncertainty[J]. IEEE Transactions on Automatic Control, 2007, 52(8): 1362-1365.

共引文献39

同被引文献5

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部