摘要
为达到对通风机风速控制的准确性和解决传统风速控制方式的问题,在对通风机简单概述的基础上,对工作面需风量的预测展开研究,确定需风量预测的模型;对比了传统PID控制策略、模糊算法控制策略以及T-S模糊神经控制策略的响应特性和超调量,确定采用T-S模糊神经控制策略实现通风机的智能控制,并完成了相关硬件的选型。
In order to achieve the accuracy of ventilator air speed control and solve the problems of traditional air speed control methods,based on a brief overview of the ventilator,the prediction of air demand at the working face is studied to determine the model of air demand prediction;the response characteristics and overshooting amount of traditional PID control strategy,fuzzy algorithmic control strategy and T-S fuzzy neural control strategy are compared to determine the inteligent control of the ventilator by using T-S fuzzy neural control strategy and the selection of related hardware is completed.control strategy to realize the intelligent control of the ventilator,and complete the selection of related hardware.
作者
王海鹏
Wang Haipeng(Yang Coal Group Shouyang Jingfu Coal Co.,Ltd.,Jinzhong Shanxi 045000,China)
出处
《机械管理开发》
2023年第8期212-213,218,共3页
Mechanical Management and Development
关键词
通风机
需风量
节能控制
T-S模糊神经控制策略
响应时间
ventilation fan
air demand
energy saving control
T-S fuzzy neural control strategy
response time