期刊文献+

Role-Based Network Embedding via Quantum Walk with Weighted Features Fusion

下载PDF
导出
摘要 Role-based network embedding aims to embed role-similar nodes into a similar embedding space,which is widely used in graph mining tasks such as role classification and detection.Roles are sets of nodes in graph networks with similar structural patterns and functions.However,the rolesimilar nodes may be far away or even disconnected from each other.Meanwhile,the neighborhood node features and noise also affect the result of the role-based network embedding,which are also challenges of current network embedding work.In this paper,we propose a Role-based network Embedding via Quantum walk with weighted Features fusion(REQF),which simultaneously considers the influence of global and local role information,node features,and noise.Firstly,we capture the global role information of nodes via quantum walk based on its superposition property which emphasizes the local role information via biased quantum walk.Secondly,we utilize the quantum walkweighted characteristic function to extract and fuse features of nodes and their neighborhood by different distributions which contain role information implicitly.Finally,we leverage the Variational Auto-Encoder(VAE)to reduce the effect of noise.We conduct extensive experiments on seven real-world datasets,and the results show that REQF is more effective at capturing role information in the network,which outperforms the best baseline by up to 14.6% in role classification,and 23% in role detection on average.
出处 《Computers, Materials & Continua》 SCIE EI 2023年第8期2443-2460,共18页 计算机、材料和连续体(英文)
基金 supported in part by the National Nature Science Foundation of China(Grant 62172065) the Natural Science Foundation of Chongqing(Grant cstc2020jcyjmsxmX0137).
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部