期刊文献+

基于ROS和深度学习的杏鲍菇智能分选系统设计

Design of intelligent sorting system of Pleurotus eryngii based on ROS and deep learning
下载PDF
导出
摘要 为解决杏鲍菇人工分选耗时低效、准确率低的问题,提出一种基于深度学习的分级检测与抓取检测双模型并联的杏鲍菇智能分选方法和机器人智能分选系统。通过深度相机采集杏鲍菇图像,采用机器人作为分选执行器,基于ROS(Robot Operating System)应用python和C++语言设计开发智能分选控制软件,基于PyQt设计开发监控管理系统。测试结果表明:本分选系统可自动实现杏鲍菇的分级检测和机器人分选抓取,单只杏鲍菇分选检测用时18 ms,分级检测平均准确率为88.35%,机器人抓取成功率为98.33%,智能分选成功率为88.35%,证实系统整体的可行性与有效性,为其他农产品智能分选系统的整体实现提供新的解决思路。 In order to solve the problem of time-consuming,inefficiency and low accuracy of manual sorting of Pleurotus eryngii,this paper proposes an intelligent sorting method and robot intelligent sorting system for Pleurotus eryngii,which is dual-model parallel method of grading detection and grasp detection based on deep learning.The depth camera is used to collect the images of Pleurotus eryngii,and the robot is used as the sorting actuator.The intelligent sorting control software is designed based on ROS(Robot Operating System),python and C++language,and the monitoring and management system is designed based on PyQt.The test results show that the sorting system can automatically realize the grading detection of Pleurotus eryngii and the robot sorting and grasping.The sorting detection of single Pleurotus eryngii takes 18 ms,and the average accuracy of grading detection is 88.35%,the success rate of robot grasping is 98.33%,and the success rate of intelligent sorting is 88.35%,which confirms the feasibility and effectiveness of the system as a whole.It provides a new solution for the whole realization of intelligent sorting system of other agricultural products.
作者 孙松丽 温宏愿 刘宾龄 钟锦扬 毛政兴 Sun Songli;Wen Hongyuan;Liu Binling;Zhong Jinyang;Mao Zhengxing(School of Intelligent Manufacture,Taizhou Institute of Sci.&Tech.,NJUST,Taizhou,225300,China)
出处 《中国农机化学报》 北大核心 2023年第8期95-102,共8页 Journal of Chinese Agricultural Mechanization
基金 泰州市科技支撑计划(农业)项目(TN202011) 江苏省“青蓝工程”人才项目(苏教师函[2020]10号)。
关键词 杏鲍菇 智能分选 深度学习 机器人抓取 机器人操作系统 农产品加工 Pleurotus eryngii intelligent sorting deep learning robot grasping ROS
  • 相关文献

参考文献6

二级参考文献56

  • 1张璐,黄琳,李备备,陈鑫,段青玲.基于多尺度融合与无锚点YOLO v3的鱼群计数方法[J].农业机械学报,2021,52(S01):237-244. 被引量:16
  • 2赵娟,彭彦昆,Sagar Dhakal,张雷蕾.基于机器视觉的苹果外观缺陷在线检测[J].农业机械学报,2013,44(S1):260-263. 被引量:43
  • 3王亚萍,王贵禧,李艳菊.冬枣贮藏保鲜技术研究进展[J].中国农学通报,2006,22(3):82-87. 被引量:33
  • 4NY/T 1066-2006 马铃薯等级规格[S].
  • 5高岚,廖云良,朱波华,李俊,周金勇.自适应阈值分割的图像边缘检测方法研究[J].交通与计算机,2007,25(5):73-76. 被引量:4
  • 6Y. Tao, C. T. Morrow, P.H. Heinemann, et al. Fourier based separation technique for shape grading of potatoes using machine vi- sion [J]. Transactions of the ASAE, 1995, 38(3) : 949-957.
  • 7Tao Y, Heinemann P H, Varghese Z, et al. Machine vision for col- or inspection of potatoes and ales [C]. Transactions of the ASAE, 1995, 38(5): 1551-1561. P.
  • 8aul H Heinemann, Niranjan P Pathare, Charles T Morrow. An auto- mated inspection station for machine-vision grading of potatoes [J]. Ma- chine Vision and Applications, 1996, 9(1): 14-19.
  • 9S.H. Deck, P. H. Heinemann, Z. Varghese, eta]. Comparison of a neural and traditional classifier for machine vision inspection of po- tatoes [J]. Applied engineering in agriculture, 1995, 11(2) : 319- 326.
  • 10J.C. Noordam, G.W. Otten, A. J. M. Timmermans, et al. High seed potato grading and quality inspection based on a color vision system [J]. SIE proceedings Vol. 3966. 2000: 206-217.

共引文献126

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部