期刊文献+

临床预测模型中处理时依性变量的策略及进展 被引量:1

Methodology and progress in adjusting time-dependent covariates in clinical prediction models
原文传递
导出
摘要 预测模型中考虑时依性变量可改善模型的总体表现,提高其临床应用价值。界标模型、联合模型等基于传统回归策略在处理时依性变量个数和适用情境等方面存在局限,神经网络等机器学习算法有望对其灵活处理。本文针对传统模型、机器学习算法,总结各自纳入时依性变量的建模思路,梳理各方法的适用场景,概括现有方法仍存在的问题,以期为未来预测建模处理时依性变量提供方法学启示。 Adjusting time-dependent covariates into prediction models may help improve model performance and expand clinical applications.The methodology of handling time-dependent covariates is limited in traditional regression strategies(i.e.,landmark model,joint model).For example,the number of predictors and practical situations which can be handled are restricted when using regression models.One new strategy is to use machine learning(i.e.,neural networks).This review summarizes the methodology of handling time-dependent covariates in prediction models,such as applicable scenarios,strengths,and limitations,to offer methodological enlightenment for processing time-dependent covariates.
作者 于玥琳 胥洋 王俊峰 詹思延 王胜锋 Yu Yuelin;Xu Yang;Wang Junfeng;Zhan Siyan;Wang Shengfeng(Key Laboratory of Epidemiology of Major Diseases,Ministry of Education/Department of Epidemiology and Biostatistics,School of Public Health,Peking University,Beijing 100191,China;Center for Real-world Evidence Evaluation,Peking University Clinical Research Institute,Beijing 100191,China;Julius Center for Health Sciences and Primary Care,University of Utrecht,Utrecht 3508 TC,Netherlands)
出处 《中华流行病学杂志》 CAS CSCD 北大核心 2023年第8期1316-1320,共5页 Chinese Journal of Epidemiology
基金 国家自然科学基金(82173616)。
关键词 临床预测模型 时依性变量 动态预测 机器学习 Clinical prediction model Time-dependent covariate Dynamic prediction Machine learning
  • 相关文献

参考文献4

二级参考文献48

  • 1高峻,董伟,高尔生,赵耐青.多结局生存分析模型与Cox模型的随机模拟比较[J].中国卫生统计,2007,24(3):248-250. 被引量:9
  • 2徐英,骆福添.Buckley-James模型在生存分析中的应用[J].中国卫生统计,2007,24(1):69-70. 被引量:1
  • 3Lindley DV. "Approximate Bayesian methods" in Bayesian statis- tics. Valencia, Spain : Valencia Press, 1980.
  • 4Naylor JC, Smith AFM. Applications of a method for the efficient computation of posterior distributions. Applied Statistics, 1982, 31 (2) :214-225.
  • 5Tiemey L, Kadane JB. Accurate approximations for posterior mo- ments and marginals. Journal of American Statistical Association, 1986,81 ( 1 ) :82-86.
  • 6Congdon P. Bayesian statistical modeling. England:John Wiley and Sons ,2001.
  • 7Congdon P. Applied Bayesian modeling. England:John Wiley and Sons ,2003.
  • 8Kalbfleisch JD, Prentice RL. The statistical analysis of failure time data. New York:John Wiley & Sons, 1980.
  • 9Cox DR, Oakes D. Analysis of survival data. London:Chapman and Hall, 1984.
  • 10Kaplan E, Meier P. Nonparametric estimation from incomplete obser- vations. Journal of the American Statistical Association, 1958, 53 (282) :457-481.

共引文献38

同被引文献5

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部