期刊文献+

Review of atomization mechanism and spray characteristics of a liquid jet in supersonic crossflow

原文传递
导出
摘要 The injection and atomization process of a liquid fuel jet is critical for an ignition start of a scramjet engine.Airwall-mounted crossflow injection strategy is widely used in scramjet combustors,avoiding high total pressure loss and allowing the liquid fuel to rapidly undergo atomization,mixing,and evaporation.In this review,research progress on a liquid jet in supersonic crossflow was evaluated from aspects of atomization mechanism and spray characteristics.When a liquid jet is injected into a supersonic crossflow,primary and secondary breakups occur successively.The surface instability of liquid can significantly affect the breakup process.This review discusses the current understanding of the breakup process and spray characteristics of a liquid jet in supersonic crossflow including the mechanism of atomization and the characteristics of distribution and atomization.The development of windward Rayleigh-Taylor(R-T)unstable waves is the main factor in column breakup.The development of Kelvin-Helmholtz(K-H)unstable waves along the circumferential direction of the jet or droplets is the main factor of surface and droplet breakups.The liquid-gas momentum ratio is the most important factor affecting the penetration depth.The span width of the liquid jet is affected by the windward area.Breakup and coalescence lead to a transformation of the size distribution of droplets from S-or C-shaped to I-shaped,and the velocity distribution of the droplets on the central symmetry plane has a mirrored S-shape.The droplet distribution on the spanwise cross-section retains a structure similar to an“Ω”shape.At last,some promising recommendations have been proposed,namely a theoretical predictive model which can describe the breakup mechanism of a liquid jet,the distribution characteristics and droplets size distribution of a liquid jet under a cavity combustion chamber,especially for enthalpy flows with complex wave structures.
出处 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2023年第8期1-23,共23页 中国航空学报(英文版)
基金 supports from the National Natural Science Foundation of China(Nos.11902353,12272408,12102472,11902351,and 12102462) the National Science Fund for Distinguished Young Scholars,China(No.11925207) the Hunan Provincial Postgraduate Research Innovation Project,China(No.CX20210035).
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部