期刊文献+

CO_(2) emissions reduction performance of China’s HSR based on substitution effect and demand effect

原文传递
导出
摘要 As an important transportation infrastructure and transportation backbone in China,high-speed rail(HSR)plays a critical role in promoting the development of green and low-carbon transportation.Calculating the CO_(2) emissions reduction performance of HSR will be conduci v e to pr omote the CO_(2) emissions r eduction w ork of the r ail w ay.Based on the Dalkic HSR CO_(2) emissions r eduction performance model,by adjusting the HSR CO_(2) emission factor(CEF HSR),the annual times of departures(T)and other parameters,this study develops a Chinese HSR CO_(2) emissions reduction performance model.Taking the Beijing-Shanghai HSR as the resear c h object,this study conducts a questionnaire survey to explore the substitution effect and demand effect of HSR on different transportation modes;collects data such as passenger v olume,av era ge electricity use and annual times of departures of the Beijing-Shanghai HSR in 2019;and calculates the CO_(2) emissions reduction performance of the Beijing-Shanghai HSR.This study has two main results:(1)It builds a Chinese HSR CO_(2) emissions reduction performance model based on substitution effect and demand effect.(2)In 2019,the CO_(2) emissions of the Beijing-Shanghai HSR are 2898233.62 t,the CO_(2) emissions reduction performance of the Beijing-Shanghai HSR is 17999482.8 t,the annual CO_(2) emissions of the Beijing-Shanghai line in‘No HSR’case are 7.2 times as in the’HSR’case and the PKT of the HSR is 10.2 g/pkm.Based on the research results,this study proposes three CO_(2) emissions reduction policy suggestions.This study would be helpful for further HSR CO_(2) emissions reduction resear c h and departments related to railway transportation management to make CO_(2) emissions reduction policies.
出处 《Transportation Safety and Environment》 EI 2023年第3期38-45,共8页 交通安全与环境(英文)
基金 This study was supported by the Fundamental Research Funds for the Central Universities(Grant No.2022YJS053).
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部