摘要
May-Nowak模型是一类重要的生物学模型,为刻画病毒传播的动力学特征,研究了一类具有Beddington-DeAngelis功能反应函数的病毒感染趋化模型的动力学性质。在任意空间维数条件下,当初值和参数α满足一定的正则性和限制条件时,通过应用Lp估计和一些经典的不等式,再结合Neumann热半群理论等,得到了系统解的全局有界性。特别地,当基本再生数R0<1时,构造恰当的Lyapunov函数,证明了全局有界解的渐近行为。
May-Nowak model is an important biological model.In order to describe the dynamic characteristics of virus transmission,we study the dynamic properties of a chemotactic model of viral infection with Beddington-DeAngelis energy reaction function.Under the condition of arbitrary space dimension,when the initial value and parameterαsatisfy certain regularity and restrictions,the global boundedness of the solution of the system is obtained by using L p estimation and some classical inequalities as well as Neumann heat semigroup theory.In particular,when the reproducing number R 0<1,the asymptotic behavior of the globally bounded solution is proved by constructing an appropriate Lyapunov function.
作者
刘丹丹
刘洪燕
蒋敏
LIU Dandan;LIU Hongyan;JIANG Min(School of Data Science and Information Engineering,Guizhou Minzu University,Guiyang 550025,China)
出处
《湖北民族大学学报(自然科学版)》
CAS
2023年第3期381-388,共8页
Journal of Hubei Minzu University:Natural Science Edition
基金
贵州省教育厅青年人才成长项目(黔教合KY字[2017]133)。