摘要
针对目前大多数的信道状态信息(CSI)活动识别需要通过人工手动来提取特征,耗时且繁琐,准确率不高的问题,提出了基于双向长短期记忆(Bi-LSTM)神经网络加注意力机制的识别方法。将传统的LSTM网络扩展为双向LSTM并加入注意力机制,实现有选择性地提取序列的前后信息,从而提升了人体活动识别的准确率。实验结果表明,所提出的方法具有更好的识别效果。
Aiming at the problem that at present,most channel state information(CSI)activity recognition requires manual extraction features,which is time-consuming and cumbersome,and has low accuracy,a recognition method based on bidirection long short-term memory(Bi-LSTM)neural network and attention mechanism is proposed.Traditional LSTM network is extended to Bi-LSTM and added attention mechanism,and selectively extract information of sequence,so as to improve accuracy of human activity recognition.Experimental results show that the proposed method has better recognition effect.
作者
黄彬
常俊
武浩
张力
刘欢
HUANG Bin;CHANG Jun;WU Hao;ZHANG Li;LIU Huan(College of Information,Yunnan University,Kunming 650500,China)
出处
《传感器与微系统》
CSCD
北大核心
2023年第9期121-124,共4页
Transducer and Microsystem Technologies
基金
国家自然科学基金资助项目(61562090)
云南省教育厅科研基金资助项目(2019J0007)。
关键词
活动识别
无线网络
信道状态信息
长短期记忆
注意力机制
activity recognition
WiFi
channel state information(CSI)
long short-term memory(LSTM)
attention mechanism