期刊文献+

基于深度学习病原微生物形态学检测方法的研究现状及展望

Research Status and Prospects of Morphological Detection Methods for Pathogenic Microorganisms Based on Deep Learning
下载PDF
导出
摘要 病原微生物导致的传染病严重威胁人类健康。目前有多种微生物的分析方法,如酶联免疫吸附试验、聚合酶链式反应以及基于显微镜的形态学检测,其中形态学检测方法具有成本低和准确性高的特点。随着计算机技术的发展以及人工智能(Artificial Intelligence,AI)在生物医学领域应用的不断探索,使显微镜下微生物图像的自动形态识别成为可能。本文旨在对近年来国内外基于AI的形态学诊断技术在病毒、细菌、寄生虫和真菌的应用进行了分析,讨论了现有研究存在的不足和挑战,并进一步提出了新的研究思路:利用AI、微型化、自动控制等技术实现全自动便携化高致病微生物分析仪的研发,该设备将用于病原微生物实时检测,对生物安全预警具有重要意义。 Infectious diseases caused by pathogenic microorganisms seriously threaten human health.At present,there are a variety of microbial analysis methods,such as enzyme-linked immunosorbent assay,polymerase chain reaction and microscopebased morphological detection methods,among which the morphological detection method has the characteristics of low cost and high accuracy.With the development of computer technology and the continuous exploration of the application of artificial intelligence(AI)in the field of biomedicine,automatic morphological recognition of microbiological images under the microscope has become possible.This paper aims to analyze the application of morphological diagnosis techniques based on AI in viruses,bacteria,parasites and fungi at home and abroad in recent years,and to discuss shortcomings and challenges of the existing research,to further propose a new research idea:the development of a fully automatic portable highly pathogenic microorganism analyzer using AI,miniaturization,automatic control and other technologies.The device will be used for real-time detection of pathogenic microorganisms,which is of great significance for biosafety early warning.
作者 孔令敏 刘恰 姜廷帅 卫娜 田越 崔骊 云庆辉 KONG Lingmin;LIU Qia;JIANG Tingshuai;WEI Na;TIAN Yue;CUI Li;YUN Qinghui(Department of Medical Equipment,The First Affiliated Hospital of Air Force Medical University,Xi’an Shaanxi 710032,China)
出处 《中国医疗设备》 2023年第9期166-174,共9页 China Medical Devices
基金 空军军医大学军事医学提升计划(2020SWAQ17) 西京医院学科助推计划(XJZT21CZ01)。
关键词 病原微生物 显微镜 形态学检测 人工智能 pathogenic microorganism microscope morphological detection artificial intelligence
  • 相关文献

参考文献7

二级参考文献57

  • 1张瑞萍.防御生物、化学和放射性武器恐怖袭击的能力亟待加强[J].北京人民警察学院学报,2004(1):20-22. 被引量:5
  • 2蔡玉梅,张素娟.基因芯片概述[J].中国科技信息,2005(12C):39-39. 被引量:2
  • 3陈建明,韩俊,董辰方,高晨,雷艳君,安润,谭文杰,周永东,郭瑜,姜慧英,祝庆余,董小平.通用型病毒检测芯片在三种人类致病病毒属检测中的应用[J].中华实验和临床病毒学杂志,2006,20(4):327-330. 被引量:5
  • 4Kost GJ, Tran NK, Tuntideelert M, et al. Katrina, the tsunami, and point-of-care testing: optimizing rapid response diagnosis in disasters[J]. Am J Clin Pathol, 2006, 126(4) : 513 -520.
  • 5Hanafiah KM, Garcia M, Anderson D. Point-of-care testing and the control of infectious diseases [ J]. Biomark Med, 2013, 7 (3): 333 -347.
  • 6Sridhar S, To KK, Chan JF, et al. A systematic approach to no- vel virus discovery in emerging infectious disease outbreaks[ J]. J Mol Diagn, 2015, 17(3): 230-241.
  • 7Oblath EA, Henley WH, Alarie JP, et al. A microfluidic chip integrating DNA extraction and real-time PCR for the detection of bacteria in saliva[J]. Lab Chip, 2013, 13(7) : 1325 -1332.
  • 8Niemz A, Ferguson TM, Boyle DS. Point-of-care nucleic acid testing for infectious diseases[ J]. Trends Bioteehnol, 2011, 29 (5) : 240 - 250.
  • 9Luppa PB, MUller C, Schlichtiger A, et al. Point-of-care testing (POCT) : current techniques and future perspectives[ J]. Trends Analytl Chem, 2011, 30(6): 887-898.
  • 10Le T, Adamiak B, Benton D, et al. Aptamer-based biosensors for the rapid visual detection of flu viruses [ J 1. Chem Commun (Camb), 2014, 50(98): 15533-15536.

共引文献52

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部