摘要
目前方面级情感分析任务存在类别标签不平衡的问题,会导致模型过多学习非方面词标签,影响模型的性能。基于BERT端到端方面级情感分类模型,针对其类别标签不平衡的问题进行深入研究,提出使用梯度均衡机制缓解类别标签不平衡的问题,采用指数滑动平均的方法缓解潜在离群点样本对实验结果造成的影响,提升模型的性能。在4个标准数据集中进行实验,实验结果表明,所提方法在实验结果中(F1值)相比许多强基线方法有较为明显提升。
Aspect-based sentiment analysis task has the problem of unbalanced label class,causing the model to learn too much non-aspect word labels,which affecting the performance of the model.Based on BERT end-to-end aspect-based sentiment analysis model,focusing on the problem of unbalanced label class,in-depth research was conducted,gradient harmonized mechanism was used to alleviate the problem of unbalanced labels.To improve the performance of the model,exponential moving average was used to alleviate the influence of potential outlier samples on the experimental results.Experiments were carried out on four benchmark datasets.Experimental results show that the proposed method is better than many strong baselines methods.
作者
罗涵天
杨雅婷
马博
董瑞
李晓
LUO Han-tian;YANG Ya-ting;MA Bo;DONG Rui;LI Xiao(Multilingual Information Technology Lab,The Xinjiang Technical Institute of Physics and Chemistry,Chinese Academy of Sciences,Urumqi 830011,China;School of Computer and Control Engineering,University of Chinese Academy of Sciences,Beijing 100049,China;Xinjiang Laboratory of Minority Speech and Language Information Processing,The Xinjiang Technical Institute of Physics and Chemistry,Chinese Academy of Sciences,Urumqi 830011,China)
出处
《计算机工程与设计》
北大核心
2023年第8期2555-2560,F0003,共7页
Computer Engineering and Design
基金
中国科学院青年创新促进会基金项目(科发人函字[2019]26号)
国家自然科学基金项目(U2003303)
国家重点研发计划基金项目(2017YFC0822505-4)
新疆天山创新团队基金项目(2020D14045)
天山青年优秀青年科技人才基金项目(2019Q031)
中国科学院西部青年学者B类基金项目(2019-XBQNXZ-B-008)。
关键词
梯度均衡
端到端
方面级
情感分析
不平衡
标签
离群点
gradient harmonized mechanism
end-to-end
aspect-based
sentiment analysis
unbalanced
label
outlier