期刊文献+

基于人工智能的图书馆学生学习状态监测技术研究 被引量:1

Research on Student Learning State Monitoring Technology for Library Based on Artificial Intelligence
下载PDF
导出
摘要 为提高高校图书馆学生学习状态监测的智能化水平,研究了基于人工智能的学生学习状态监测技术。研究通过基于级联回归的算法对学生人脸面部特征点提取,识别眨眼、打哈欠等状态,并通过对头部姿态信息的估计,分析学生的学习状态。通过摄像头采集图像信息,对算法进行实验测试,结果表明:研究的方法能够对学生眨眼、打哈欠和瞌睡点头等状态进行智能监测,根据监测结果通过提醒等方式可服务于学生学习效率提升。该系统为提高图书馆自习室、研修室共享资源的利用率提供了有效解决方法,对提高高校图书馆智能化管理水平有一定的应用意义。 To improve the intelligentization level of student learning status monitoring in university libraries,the monitoring technology of student learning status based on artificial intelligence is studied.An algorithm based on cascade regression is used to extract facial fea-ture points of students,recognizing blinking,yawning and other states,then students’learning state is analyzed through the estimation of head posture information.The image information is collected by the camera,and the algorithm is tested experimentally.The results dem-onstrate that the method can intelligently monitor the students’blinking,yawning,dozing and other states,and can serve the improve-ment of students’learning efficiency through reminders and other means according to the monitoring results.This system provides an ef-fective solution for improving the utilization rate of shared resources in the self-study room and research room of the library,and has cer-tain application significance for improving the intelligent management level of university libraries.
作者 姜雨辰 何赫 刘涛 徐嵩 徐琳 季善斌 王海瑶 JIANG Yuchen;HE He;LIU Tao;XU Song;XU Lin;JI Shanbin;WANG Haiyao(School of Aerospace Engineering,Shenyang Aerospace University,Shenyang Liaoning 110136,China;Library,Shenyang Aerospace University,Shenyang Liaoning 110136,China;School of Electronic and Information Engineering,Shenyang Aerospace University,Shenyang Liaoning 110136,China)
出处 《电子器件》 CAS 北大核心 2023年第4期1070-1074,共5页 Chinese Journal of Electron Devices
基金 2023辽宁省高等学校图书情报工作委员会资助项目(LTB202303) 沈阳航空航天大学教学改革项目(JXJG2022021,JG2022056,YJSJG202105) 沈阳航空航天大学大学生创新创业训练项目(2022151)。
关键词 图书馆智能化管理 人工智能 学习状态监测 人脸检测 头部姿态估计 library intelligent management artificial intelligence learning status monitoring face detection head posture estimation
  • 相关文献

参考文献12

二级参考文献63

  • 1陈健,钱芸芸.用DSP实现实时人脸检测[J].仪器仪表学报,2004,25(z1):587-588. 被引量:5
  • 2彭聃龄,杨旻,杨丽珠.情境线索与面部线索在表情判断中的作用[J].心理科学通讯,1985,8(2):28-34. 被引量:4
  • 3乔建中.不同类型表情和不同强度表情在表情判别中的作用[J].心理科学通讯,1989,12(2):9-14. 被引量:15
  • 4隋雪,任延涛.面部表情识别的即时加工过程[J].心理学报,2007,39(1):64-70. 被引量:28
  • 5Peng Wang, Frederick Barrett. Automated video-based facial expression analysis of neuropsychiatric disorders [J]. Journal of Neuroscience Methods, 2008, 168 (1) : 224-238.
  • 6Ruihu Wang. Adaboost for feature selection, classification and its relation with SVM, a review [J]. Physics Procedia, 2012 (25) : 800-807.
  • 7Zhong Jin, Zhen Lou. Face detection using template matching and skin-color information [J]. Neuroeomputing, 2007, 70 (4-6) : 794-800.
  • 8ZhongJin, Zhen Lou, Jingyu Yang, et al. Face detection using template matching and skin-color information [J]. Neurocomputing, 2007 (70): 794-800.
  • 9Liu Ruiming, Lu Yanhong, Gong Chenglong, et al. Infrared point target detection with improved template matching [J]. Infrared Physics & Technology, 2012, 55 (4): 380-387.
  • 10Reneher A C, Christensen W F. Methods of Multivariate Analysis [ M ]. 3 Ed. Hoboken : Wiley Press ,2012:405-433.

共引文献113

同被引文献5

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部