期刊文献+

广西区域大气水汽转换系数的算法研究

Research on the Algorithm of the Atmospheric Water Vapor Conversion Coefficient in Guangxi
下载PDF
导出
摘要 为了确保大气可降水量反演精确度得以大幅度提高,现以“广西区域”为研究对象,提出一种大气水汽转换系数新算法。该文将结合广西4个探空站相关探空资料,完成对广西区域大气水汽转换系数计算模型的构建,并将该模型与广西高程模型、中国低纬度模型进行全面地分析和对比。结果表明:该文所提出的转换系数新算法,有效地提高了内外大气可降水量反演精确度,使4个站点的精度平均绝对误差最小值为0.0013,最大值为0.0018,均方跟误差最小值为0.0016,最大值为0.0022,外符合精度平均绝对误差、均方根误差分别为0.0017、0.0021,这为后期广西高程模型构建提出重要的依据和参考。 In order to ensure that the retrieval accuracy of atmospheric precipitable water can be greatly improved,a new algorithm of the atmospheric water vapor conversion coefficient is proposed with"Guangxi"as the research object now.This paper will construct the calculation model of the atmospheric water vapor conversion coefficient in Guangxi in combination with the relevant sounding data of four sounding stations in Guangxi,and comprehensively analyzes and compares the model with the elevation model of Guangxi and the low-latitude model of China.The results show that the new algorithm of the conversion coefficient proposed in this paper effectively improves the retrieval accuracy of internal and external atmospheric precipitable water,so that the minimum average absolute error of the accuracy of four stations is 0.0013 and the maximum value is 0.0018,the minimum root-mean-square error is 0.0016 and the maximum is 0.0022,and the average absolute error of external coincidence accuracy and the root-mean-square error are 0.0017 and 0.0021,respectively,which provides an important basis and reference for the later construction of the elevation model of Guangxi.
作者 习尧青 XI Yaoqing(Guangxi City Vocational University,Chongzuo,Guangxi Zhuang Autonomous Region,532100 China)
出处 《科技资讯》 2023年第16期226-229,共4页 Science & Technology Information
基金 2021年度广西高校中青年教师科研基础能力提升项目“广西地区大气水汽转换系数模型研究”(项目编号:2021KY1861)。
关键词 转换系数 大气水汽 加权平均温度 探空资料 Conversion coefficient Atmospheric water vapor Weighted mean temperature Sounding data
  • 相关文献

参考文献10

二级参考文献57

  • 1谷晓平,王长耀,吴登秀.GPS水汽遥感中的大气加权平均温度的变化特征及局地算式研究[J].气象科学,2005,25(1):79-83. 被引量:39
  • 2刘旭春,王艳秋,张正禄,潘雄.地基GPS遥感大气水汽含量中加权平均温度获取方法的比较分析[J].北京建筑工程学院学报,2006,22(2):38-40. 被引量:9
  • 3王勇,柳林涛,郝晓光,肖建华,王厚之,许厚泽.武汉地区GPS气象网应用研究[J].测绘学报,2007,36(2):141-145. 被引量:34
  • 4[1]LesterL. Yuan,RichardA. Anthes,et al:Sensing Climate Change Using the GPS[J]. J. Geophys. Res. ,1993,98(8): 14925- 14937.
  • 5[2]Michael Bevis,Steven Businger,et al:Remote Sensing of Atmospheric Water Vapor Using the GPS[J]. J. Geophys. Res. , 1992,97 (14): 15878- 15801.
  • 6[4]D.S. Macmillan: Atmospheric Gradients from Very Long Baseline Interferometry Observations [J].Geophys. Res. lett. , 1995,22(9): 1041 - 1044.
  • 7[5]T. Ragne Emardson, Gunnar Elgered, et al: Three MONths of Continuous Monitoring of Atmospheric Water Vapor with a Network of GPS Receivers[J].J. Geophys. Res, 1998,103(D2): 1087- 1820.
  • 8[6]Michael Bevis, Steven Businger: GPS Meteorology and the International GPS Service[J]. The Preceedings of IGS 95 workshop,6~16,1995.
  • 9[7]Christian Rocken, Randolph. Ware, et al: Sensing Atmospheric Water Vapor with GPS[J]. Geophys.Res. Lett. ,1993,20(23)2631-2634.
  • 10[8]Randolph Ware, Christian Rocken, et al: Pointed Water Vapor Radiometer Corrections for Accurate Global Positioning System Surveying[J] ,Geophys.Res. Lett., 1993,20(23): 2635- 2638.

共引文献35

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部