期刊文献+

声场波数积分截断波数自适应选取方法 被引量:1

Adaptive selection of truncated wavenumber in sound field calculation with wavenumber integration method
下载PDF
导出
摘要 在采用波数积分法进行声场计算的过程中,需要选取合适的积分截断波数,文章提出一种应用于流体介质中宽带声场波数积分计算的截断波数自适应选取方法。首先根据波数域格林函数的衰减特性构造一个数学模型,然后利用卡尔曼滤波器对该数学模型的拟合参数进行跟踪和预测,最后根据预测的模型参数计算截断波数。仿真试验结果表明,该方法实现了给定精确度下的积分截断波数自适应选取,能够克服现有方法不能兼顾低频段精确度和高频段计算量的问题,并且不会引入太多额外的计算量。 It is necessary to select an appropriate integral truncated wavenumber in sound field calculation with wavenumber integration method.In this paper,an adaptive truncated wavenumber selection method for broadband sound filed calculation in fluid waveguide is proposed,which means that the wavenumber integral can be truncated at a given accuracy.A mathematical model is established to fit the attenuation characteristics of Green's function in wavenumber domain.The fitting parameters in the mathematical model are tracked and predicted by Kalman filters.The truncated wavenumber is estimated according to the mathematical model and its predicted parameters.The experimental results show that the truncated wavenumber selected by the proposed adaptive method can make the integral truncated at a given accuracy,which solves the problem that the existing methods cannot take into account the calculation accuracy at low frequency and the calculation amount at high frequency,and no much additional computation is introduced.
作者 李承帮 江鹏飞 孙军平 衣雪娟 林建恒 LI Chengbang;JIANG Pengfei;SUN Junping;YI Xuejuan;LIN Jianheng(Qingdao Branch,Institute of Acoustics,Chinese Academy of Sciences,Qingdao 266114,Shandong,China;University of Chinese Academy of Sciences,Beijing 100049,China)
出处 《声学技术》 CSCD 北大核心 2023年第4期533-540,共8页 Technical Acoustics
基金 中国科学院声学研究所前沿探索基金项目(QYTS202008),中国科学院海洋信息技术创新研究院前沿基础研究项目(QYJC201911)。
关键词 声场计算 波数积分 自适应 截断波数 海洋声学 sound field calculation wavenumber integration adaptive truncated wavenumber ocean acoustics
  • 相关文献

参考文献3

二级参考文献32

  • 1张翼鹏,马远良.空气中快速运动声源水下声场的波数积分模型[J].应用声学,2007,26(2):74-82. 被引量:12
  • 2Pekeris C L 1948 Geol. Soc. Am. Mere. 27 1.
  • 3Zhang Z Y and Tindle C T 1993 J. Acoust. Soc. Am. 93 205.
  • 4Fawcett J A 2003 Z Acoust. Soc. Am. 113 194.
  • 5Buckingham M J and Giddens E M 2006 J. Acoust. Soc. Am. 119 123.
  • 6Jensen F B, Kuperman W A, Porter M B and Schmidt H 2011 Computational Ocean Acoustics, 2nd edn. (New York: Springer).
  • 7Westwood E K and Koch R A 1999 J. Acoust. Soc. Am. 106 2513.
  • 8Stickler D C 1975 J. Acoust. Soc. Am. 57 856.
  • 9Bartberger C L 1977 J. Acoust. Soc. Am. 61 1643.
  • 10Bucker H P 1979 J. Acoust. Soc. Am. 65 906.

共引文献7

同被引文献2

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部