期刊文献+

Equicontinuity and Sensitivity of Group Actions

原文传递
导出
摘要 Let(X,G)be a dynamical system(G-system for short),that is,X is a topological space and G is an infinite topological group continuously acting on X.In the paper,the authors introduce the concepts of Hausdorff sensitivity,Hausdorff equicontinuity and topological equicontinuity for G-systems and prove that a minimal G-system(X,G)is either topologically equicontinuous or Hausdorff sensitive under the assumption that X is a T_(3)-space and they provide a classification of transitive dynamical systems in terms of equicontinuity pairs.In particular,under the condition that X is a Hausdorff uniform space,they give a dichotomy theorem between Hausdorff sensitivity and Hausdorff equicontinuity for G-systems admitting one transitive point.
出处 《Chinese Annals of Mathematics,Series B》 SCIE CSCD 2023年第4期501-516,共16页 数学年刊(B辑英文版)
基金 supported by the National Natural Science Foundation of China(Nos.12061043,11661054)。
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部