期刊文献+

A New Regularization Method for a Parameter Identification Problem in a Non-linear Partial Differential Equation

原文传递
导出
摘要 We consider a parameter identification problem associated with a quasilinear elliptic Neumann boundary value problem involving a parameter function a(-)and the solution u(-),where the problem is to identify a(-)on an interval I:=g(F)from the knowledge of the solution u()as g on I,where F is a given curve on the boundary of the domain CR^(3) of the problem and g is a continuous function.The inverse problem is formulated as a problem of solving an operator equation involving a compact operator depending on the data,and for obtaining stable approximate solutions under noisy data,a new regularization method is considered.The derived error estimates are similar to,and in certain cases better than,the classical Tikhonov regularization considered in the literature in recent past.
出处 《Journal of Partial Differential Equations》 CSCD 2023年第2期147-190,共44页 偏微分方程(英文版)
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部