期刊文献+

具有粘弹性阻尼的弱耦合板-波系统的一致指数稳定性

Uniform exponential stability of the weakly coupled plate-wave system with viscoelastic damping
下载PDF
导出
摘要 该文研究的是具有粘弹性阻尼的弱耦合板-波系统.在适当的假设条件下,运用算子半群理论和乘子方法,得到了弱耦合板-波系统的适定性与一致指数稳定性. In this paper,the weakly coupled plate-wave system with viscoelastic damping is studied.Under appropriate assumptions,using operator semigroup theory and multiplier method,the well-posedness and uniform exponential stability of weakly coupled plate-wave system are obtained.
作者 钱嘉祺 章春国 QIAN Jia-qi;ZHANG Chun-guo(Dept.of Math.,Hangzhou Dianzi Univ.,Hangzhou 310018,China)
出处 《高校应用数学学报(A辑)》 北大核心 2023年第3期355-363,共9页 Applied Mathematics A Journal of Chinese Universities(Ser.A)
基金 国家自然科学基金(61503103) 浙江省自然科学基金重点项目(LZ21A010001)。
关键词 板-波系统 粘弹性阻尼 适定性 一致指数稳定性 plate-wave system viscoelastic damping well posedness uniform exponential stabil-ity
  • 相关文献

参考文献2

二级参考文献10

  • 1Aissa G. Energy decay for a damped nonlinear coupled system. Journal of Mathematical Analysis and Applications, 1999, 239: 38-48. H.
  • 2an X S, Wang M X. Energy decay rate for a coupled hyperbolic system with nonlinear damping. Nonlinear Analysis, 2009, 70: 3264-3272.
  • 3Mauro de L S. Decay rates for solutions of a system of wave equations with memory. Electronic Journal of Differential Equations, 2002, 38: 1-17.
  • 4Liu S K, Liu Z Y. On the type of C0-semigroup associated with the abstract linear viscoelastic system. Z. Angew Math. Phys., 1996, 47: 1-15.
  • 5Pazy A. Semigroups of Linear Operators and Applications to Partial Differential Equations. New York: Springer-Verlag, 1983.
  • 6Chen S P, Liu K S, Liu Z Y. Spectrum and stability for elastic systems with global or local Kelvin-Voigt damping. SIAM J. Appl. Math., 1998, 2(59): 651-668.
  • 7Huang F L. Characteristic condition for exponential stability of linear dynamical systems in Hilbert spaces. Ann. of Di. Eqs., 1985, 1(1): 43-56.
  • 8章春国.具有局部记忆阻尼的非均质Timoshenko梁的稳定性[J].数学物理学报(A辑),2012,32(1):186-200. 被引量:4
  • 9Jong Yeoul Park,Sun Hye Park.GENERAL DECAY FOR A QUASILINEAR SYSTEM OF VISCOELASTIC EQUATIONS WITH NONLINEAR DAMPING[J].Acta Mathematica Scientia,2012,32(4):1321-1332. 被引量:2
  • 10章春国,谷尚武,姜敬华.具有Boltzmann阻尼的Petrovsky系统的稳定性[J].系统科学与数学,2013,33(7):807-817. 被引量:4

共引文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部