期刊文献+

基于模糊聚类与用户兴趣的协同过滤推荐算法 被引量:1

Collaborative Filtering Recommendation Algorithm Based on Fuzzy Clustering and User Interest
下载PDF
导出
摘要 针对传统协同过滤推荐算法存在的数据稀疏、推荐效率低等问题,提出一种基于模糊聚类与用户兴趣的协同过滤推荐算法。首先,分别构建用户—物品评分矩阵和用户—兴趣偏好矩阵;其次,使用粒子群优化的模糊聚类算法对用户兴趣进行聚类,将具有相似偏好的用户对该物品评分的平均值填充用户—物品评分矩阵,缓解了用户数据的稀疏性;最后,该算法综合考虑了用户—物品评分矩阵以及用户—兴趣偏好矩阵计算用户相似度,并引入物品类型惩罚因子,进一步改善用户偏好的准确度。实验结果表明,该算法能有效缓解数据的稀疏性,提高推荐算法的准确度。 Aiming at the problems of sparse data and low recommendation efficiency in traditional collaborative filtering recommendation algo-rithms,this paper proposes a collaborative filtering recommendation algorithm based on fuzzy clustering and user interest.Firstly,the user-item rating matrix and user-interest preference matrix are constructed respectively.Secondly,the fuzzy clustering algorithm based on particle swarm optimization is used to cluster user interests,and the average score of the item by users with similar preferences is filled into the user-item scoring matrix,which alleviates the sparsity of user data.Finally,the algorithm comprehensively considers the user-item rating matrix and user-interest preference matrix to calculate user similarity,and introduces the item type penalty factor to further improve the accuracy of user preference.Experimental results show that the proposed algorithm can effectively alleviate the sparsity of data and improve the accuracy of the recommendation algorithm.
作者 郭晓宇 沈宇麒 崔衍 GUO Xiaoyu;SHEN Yuqi;CUI Yan(School of Internet of Things,Nanjing University of Posts and Telecommunications,Nanjing 210003,China)
出处 《软件导刊》 2023年第9期124-131,共8页 Software Guide
关键词 协同过滤 模糊聚类 粒子群优化算法 兴趣偏好 collaborative filtering fuzzy clustering particle swarm optimization algorithm interest preference
  • 相关文献

参考文献11

二级参考文献159

  • 1琚春华,鲍福光.基于情境和主体特征融入性的多维度个性化推荐模型研究[J].通信学报,2012,33(S1):17-27. 被引量:8
  • 2崔林,宋瀚涛,陆玉昌.基于语义相似性的资源协同过滤技术研究[J].北京理工大学学报,2005,25(5):402-405. 被引量:8
  • 3张锋,常会友.使用BP神经网络缓解协同过滤推荐算法的稀疏性问题[J].计算机研究与发展,2006,43(4):667-672. 被引量:85
  • 4陈健,印鉴.基于影响集的协作过滤推荐算法[J].软件学报,2007,18(7):1685-1694. 被引量:59
  • 5Goldberg D,Nichols D,Oki B,Terry D.Using collaborative filtering to weave an information tapestry.Communications of the ACM,1992,35(12):61-70.
  • 6Resnick P,Iacovou N,Suchak M,Bergstorm P,Riedl J.GroupLens:An open architecture for collaborative filtering of netnews//Proceedings of the 1994 ACM Conference on Computer Supported Cooperative Work.Chapel Hill,North Carolina,United States,1994:175-186.
  • 7Shardanand U,Maes P.Social information filtering:Algorithms for automating "word of mouth"//Proceedings of the SIGCHI Conference on Human Factors in Computing Systems.Denver,Colorado,United States,1995:210-217.
  • 8Hill M,Stead L,Furnas G.Recommending and evaluating choices in a virtual community of use//Proceedings of the SIGCHI Conference on Human Factors in Computing Systems.Denver,Colorado,United States,1995:194-201.
  • 9Sarwar B M,Karypis G,Konstan J A,Riedl J.Application of dimensionality reduction in recommender system-A case study//Proceedings of the ACM WebKDD Web Mining for E-Commerce Workshop.Boston,MA,United States,2000:82-90.
  • 10Massa P,Avesani P.Trust-aware collaborative filtering for recommender systems.Lecture Notes in Computer Science,2004,3290:492-508.

共引文献942

同被引文献14

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部