摘要
工人未按规定佩戴护目镜的行为,在石油生产过程中存在着极大的安全隐患,而传统的监控设施又无法对该行为进行实时、准确的监察。为了解决这一安全隐患,文章提出了基于YOLOv4检测模型的护目镜佩戴识别技术,能够解决传统监控系统容易误报、漏报、报警反应时间长等问题,实现了更加及时、准确地获取监控信息,为钻井工人的安全提供了保障,并且能够在一定的程度上降低公司营运的成本。
Workers do not wear goggles as required,which poses a great potential safety hazard in the oil production process.However,traditional monitoring facilities cannot monitor this behavior in real time and accurately.In order to solve this potential safety hazard,this paper proposes goggles wearing identification technology based on YOLOv4 detection model,which can solve the problems of traditional monitoring systems such as false alarm,missing alarm,long alarm response time,etc.,achieve more timely and accurate access to monitoring information,provide security for drilling workers,and reduce the company’s operating costs to a certain extent.
作者
文瑶瑶
陈浩辰
吴英
翟渊
Wen Yaoyao;Chen Haochen;Wu Ying;Zhai Yuan(School of Intelligent Technology and Engineering,Chongqing University of Science and Technology,Chongqing 401331,China)
出处
《无线互联科技》
2023年第13期52-54,共3页
Wireless Internet Technology
基金
重庆科技学院硕士研究生创新计划项目,项目编号:YKJCX2120831。