期刊文献+

基于深度学习的RCPSP调度优先规则实时动态选择算法 被引量:1

Real-time dynamic selection algorithm of RCPSP scheduling priority rules based on deep learning
原文传递
导出
摘要 针对资源受限项目调度问题,以最小化项目完成时间为目标,设计基于深度学习的调度优先规则实时动态选择算法,在每个调度阶段实时选择优先规则进行活动安排.通过构建深度神经网络模型,确定已调度项目在各阶段的项目状态与最佳优先规则之间的映射关系,再据此为待调度项目实时动态选择优先规则,结合串行调度机制生成最终调度计划.实验研究表明:实时动态选择优先规则算法表现优于文中所涉及的单一优先规则算法及混合优先规则算法,且具有更好的泛化性;此外,与元启发式算法相比该算法具有更高的求解效率. For the resource-constrained scheduling problem,a deep learning-based real-time dynamic selection algorithm of scheduling priority rules is designed to minimize the project’s makespan.Moreover,each scheduling stage selects priority rules in real-time for activity scheduling.Through constructing a deep neural network model,the mapping relationship between the project states and the best priority rule in each scheduling stage of the scheduled project is determined.Then the priority rule is dynamically selected for the scheduled project in real-time.The final scheduling plan is obtained by combining the serial schedule generation scheme.Experimental research shows that the real-time dynamic selection priority rule algorithm outperforms the single priority rule heuristic and the hybrid priority rule heuristic covered in the paper and has better generalizability.In addition,compared with the meta-heuristic algorithm,the algorithm has a higher solution efficiency than the meta-heuristic.
作者 张亚宁 白思俊 陈志 刘书含 李骁 ZHANG Yaning;BAI Sijun;CHEN Zhi;LIU Shuhan;LI Xiao(School of Management,Northwestern Polytechnical University,Xi’an 710129,China;Department of Civil Engineering,The University of Hong Kong,Hong Kong 999077,China)
出处 《系统工程理论与实践》 EI CSSCI CSCD 北大核心 2023年第7期2142-2153,共12页 Systems Engineering-Theory & Practice
基金 国家自然科学基金(72201209,71971173) 中央高校基本科研业务费专项资金(3102020JC02)。
关键词 深度学习 项目调度 优先规则 实时动态选择 deep learning project scheduling priority rules real-time dynamic selection
  • 相关文献

参考文献10

二级参考文献108

共引文献88

同被引文献3

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部