摘要
具有原子层厚度的氧化物磁性材料拥有将二维磁性应用到下一代自旋电子学新兴领域的巨大潜力,引起了研究者的广泛关注.因此,实现二维单层氧化物磁、电性能的磁场和电场调控,为未来低功耗自旋电子器件提供了广阔应用前景.然而,电场调控二维单层氧化物磁性报道很少.本工作利用离子液体门电压进行质子掺杂,实现了对二维单层氧化物(SrRuO_(3))_(1)/(SrTiO_(3))_(N)(N=1,3)磁、电性能的电场可逆调控.随着质子掺杂浓度提高,在(SrRuO_(3))_(1)/(SrTiO_(3))_(1)中观察到了从铁磁金属到反铁磁绝缘态相变,并伴随着磁各向异性的转变.理论分析表明,质子掺杂引起的能带结构改变是结构和磁、电性能相变的主要原因.同时,SrTiO_(3)层起到质子筛作用,在质子的演化过程中扮演重要角色.该研究通过电场调控二维单层氧化物的结构和物性,为实现材料的多功能性提供了重要思路,同时也为实现低功耗功能器件提供了应用潜力.
Atomically thin oxide magnetic materials are highly desirable due to the promising potential to integrate two-dimensional(2D)magnets into next-generation spintronics.Therefore,2D oxide magnetism is expected to be effectively tuned by the magnetic and electrical fields,holding prospective for future low-dissipation electronic devices.However,the electric-field control of 2D oxide monolayer magnetism has rarely been reported.Here,we present the realization of 2D monolayer magnetism in oxide(SrRuO_(3))_1/(SrTiO_(3))_N(N=1,3)superlattices that shows an efficient and reversible phase transition through electric-field controlled proton(H^(+))evolution.By using ionic liquid gating to modulate the proton concentration in(SrRuO_(3))_1/(SrTiO_(3))_(1)superlattice,an electric-field induced metal-insulator transition was observed,along with gradually suppressed magnetic ordering and modulated magnetic anisotropy.Theoretical analysis reveals that proton intercalation plays a crucial role in both electronic and magnetic phase transitions.Strikingly,SrTiO_(3)layers can act as a proton sieve,which have a significant influence on proton evolution.Our work stimulates the tuning functionality of 2D oxide monolayer magnetism by voltage control,providing potential for future energy-efficient electronics.
作者
王国鹏
胡涛
熊奕敏
刘学
沈胜春
王建林
车梦倩
崔璋璋
张莹莹
杨鲁懿
李正操
陆亚林
田明亮
Guopeng Wang;Tao Hu;Yimin Xiong;Xue Liu;Shengchun Shen;Jianlin Wang;Mengqian Che;Zhangzhang Cui;Yingying Zhang;Luyi Yang;Zhengcao Li;Yalin Lu;Mingliang Tian(School of Physics and Optoelectronics Engineering,Anhui University,Hefei 230601,China;Hefei National Laboratory,Hefei 230028,China;Information Materials and Intelligent Sensing Laboratory of Anhui Province,Institutes of Physical Science and Information Technology,Anhui University,Hefei 230601,China;Department of Physics,University of Science and Technology of China,Hefei 230026,China;Hefei National Research Center for Physical Sciences at the Microscale,University of Science and Technology of China,Hefei 230026,China;Anhui Laboratory of Advanced Photon Science and Technology,University of Science and Technology of China,Hefei 230026,China;State Key Laboratory of Low Dimensional Quantum Physics,Department of Physics,Tsinghua University,Beijing 100084,China;State Key Laboratory for New Ceramics and Fine Processing,Key Laboratory of Advanced Materials of Ministry of Education,School of Materials Science and Engineering,Tsinghua University,Beijing 100084,China)
基金
supported by the National Natural Science Foundation of China(12104007,12004366,12004367,51627901,12074212,and U19A2093)
Tsinghua University-Zhejiang Deqing Joint Research Center for Materials Design and Industrial Innovation,Innovation Program for Quantum Science and Technology(2021ZD0302802)
National Key R&D Program of the MOST of China(2022YFA1602603)。